
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

W911NF-13-1-0098

713-348-5304

Ph.D. Dissertation

63302-CS-ACI.2

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

Future extreme-scale systems are expected to contain homogeneous and heterogeneous many-core processors, with
O(103) cores per node and O(106) nodes overall. Effective combination of inter-node and intra-node parallelism is
recognized to be a major software challenge for such systems. Further, applications will have to deal with
constrained energy budgets as well as frequent faults and failures. To aid programmers manage these complexities
and enhance programmability, much of recent research has focussed on designing state-of-art software runtime
systems. Such runtime systems are expected to be a critical component of the software ecosystem for the

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

02-10-2014

Approved for public release; distribution is unlimited.

Runtime Systems for Extreme Scale Platforms

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

dynamic task parallelism, locality control

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Vivek Sarkar

Sanjay Chatterjee

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

William Marsh Rice University
6100 Main St., MS-16

Houston, TX 77005 -1827

ABSTRACT

Runtime Systems for Extreme Scale Platforms

Report Title

Future extreme-scale systems are expected to contain homogeneous and heterogeneous many-core processors, with O
(103) cores per node and O(106) nodes overall. Effective combination of inter-node and intra-node parallelism is
recognized to be a major software challenge for such systems. Further, applications will have to deal with constrained
energy budgets as well as frequent faults and failures. To aid programmers manage these complexities and enhance
programmability, much of recent research has focussed on designing state-of-art software runtime systems. Such
runtime systems are expected to be a critical component of the software ecosystem for the management of
parallelism, locality, load balancing, energy and resilience on extreme-scale systems.

In this dissertation, we address three key challenges faced by a runtime system using a dynamic task parallel
framework for extreme-scale computing. First, we address the challenge of integrating an intra-node task parallel
runtime with a communication system for scalable performance. We present a runtime communication system, called
HC-COMM, designed to use dedicated communication cores on a system. We introduce the HCMPI programming
model which integrates the Habanero-C asynchronous dynamic task parallel language with the MPI message passing
communication model on the HC-COMM runtime. We also introduce the HAPGNS model that enables data flow
programming for extreme-scale systems in which the user does not require knowledge of MPI. Second, we address
the challenge of separating locality optimizations from a programmer with domain specific knowledge. We present a
tuning framework, through which performance experts can optimize existing applications by specifying runtime
operations aimed at co-scheduling of affinitized tasks. Finally, we address the challenge of scalable synchronization
for long running tasks on a dynamic task parallel runtime. We use the phaser construct to present a generalized tree-
based synchronization algorithm and support unified collective operations at both inter-node and intra-node levels.
Overcoming these runtime challenges are a first step towards effective programming on extreme-scale systems.

RICE UNIVERSITY

Runtime Systems for Extreme Scale Platforms

by

Sanjay Chatterjee

A Thesis Submitted
in Partial Fulfillment of the
Requirements for the Degree

Doctor of Philosophy

Approved, Thesis Committee:

Vivek Sarkar, Chair
E.D. Butcher Chair in Engineering
Professor of Computer Science

John Mellor-Crummey
Professor of Computer Science

Lin Zhong
Associate Professor of Electrical and
Computer Engineering

Zoran Budimlić
Research Scientist

Houston, Texas

December, 2013

ABSTRACT

Runtime Systems for Extreme Scale Platforms

by

Sanjay Chatterjee

Future extreme-scale systems are expected to contain homogeneous and hetero-

geneous many-core processors, with O(103) cores per node and O(106) nodes overall.

Effective combination of inter-node and intra-node parallelism is recognized to be a

major software challenge for such systems. Further, applications will have to deal

with constrained energy budgets as well as frequent faults and failures. To aid pro-

grammers manage these complexities and enhance programmability, much of recent

research has focussed on designing state-of-art software runtime systems. Such run-

time systems are expected to be a critical component of the software ecosystem for

the management of parallelism, locality, load balancing, energy and resilience on

extreme-scale systems.

In this dissertation, we address three key challenges faced by a runtime system us-

ing a dynamic task parallel framework for extreme-scale computing. First, we address

the challenge of integrating an intra-node task parallel runtime with a communication

system for scalable performance. We present a runtime communication system, called

HC-COMM, designed to use dedicated communication cores on a system. We intro-

duce the HCMPI programming model which integrates the Habanero-C asynchronous

dynamic task parallel language with the MPI message passing communication model

on the HC-COMM runtime. We also introduce the HAPGNS model that enables data

flow programming for extreme-scale systems in which the user does not require knowl-

edge of MPI. Second, we address the challenge of separating locality optimizations

from a programmer with domain specific knowledge. We present a tuning framework,

through which performance experts can optimize existing applications by specifying

runtime operations aimed at co-scheduling of affinitized tasks. Finally, we address

the challenge of scalable synchronization for long running tasks on a dynamic task

parallel runtime. We use the phaser construct to present a generalized tree-based syn-

chronization algorithm and support unified collective operations at both inter-node

and intra-node levels. Overcoming these runtime challenges are a first step towards

effective programming on extreme-scale systems.

Acknowledgments

It was an honor and a gift to have had Prof. Vivek Sarkar as my PhD advisor.

Working with him has been a truly great learning experience for me. He is one of

most brilliant and knowledgable researchers I have known, and yet he is a lesson in

humility and generosity. He participated in my research with great enthusiasm and

his guidance was critical for constructing my dissertation. His faith and confidence in

my work encouraged me to pursue exploratory research on diverse topics. He always

made himself available for discussions and even patiently sat through many Sunday

afternoons providing critical assessment of my blue-sky ideas. I am really thankful for

his support throughout my PhD years, through thick and thin, both academic and

personal, and when everything just seemed piled higher and deeper. He inspires me

to be a better human being, and that, in my eyes, makes him the complete advisor.

I would like to express my gratitude to Prof. John Mellor-Crummey for agreeing

to be on my thesis committee and supporting my research work by providing access

to the Jaguar supercomputer at Oak Ridge National Labs. The experimental results

on Jaguar are the cornerstone of my thesis and this dissertation would have been

incomplete without his help. I am really thankful for his detailed feedback on my

dissertation drafts which helped improve my writeup manyfold. I have also greatly

enjoyed being part of two parallel computing courses taught by John. I gained deep

insight into the nuances of dealing with concurrency issues and they helped me greatly

in constructing the runtime algorithms and data structures in this dissertation.

I would like to sincerely thank Prof. Lin Zhong for agreeing to be on my thesis

committee. His insights and feedback were very important in shaping my thesis and

helped me to keep the broader picture in mind for my dissertation.

I am grateful to Zoran Budimlić for agreeing be on my thesis committee. I worked

with Zoran almost on a day-to-day basis during my PhD. He is always up for quick

chats, hallway discussions and deep dive meetings. I have greatly enjoyed interacting

with him and am really thankful for his technical contributions to my research work.

I would like to thank Kath Knobe of Intel for inspiring my work on the tuning

framework. I remember meeting Kath at Intel during my internship at Hillsboro

where she was presenting her ideas on tuning. I spoke to her about similar ideas and

we started collaborating after I returned to Rice.

I would like to thank all Habanero group members, both past and present, for

helping me with discussions, feedback and insights related my work. Specifically, I

would like to thank Max Grossman for our collaboration on numerous topics, and

Vincent Cavé for many technical discussions, code reviews and helping with experi-

mental results on many projects. I would also like to thank Jun Shirako for helping

me with the phaser discussions, and Yonghong Yan for setting up much of the runtime

infrastructure. I am thankful to Sağnak Taşırlar and Milind Chabbi for painstakingly

collecting results which have greatly helped this dissertation. I will always be grateful

to Raghavan Raman for introducing me to my advisor and helping me with my ap-

plication process. I would like to thank all the wonderful office administration staff in

the Computer Science department for making sure my life went smoothly, and Ratna

Sarkar for graciously hosting the Habanero group members on many occasions.

I would like to thank my friends who have helped me remain sane during my

PhD. I want to particularly thank my friend Pratim Chowdhury for being an immense

support during the last few months before graduation.

Finally, I am ever thankful to my wonderful and supportive family. I cannot

imagine my PhD years without their help. My parents have always motivated me

with their great enthusiasm and respect for higher education. To this day, their

belief in me inspires me to overcome the greatest of challenges in my life. My wife,

Sucharita, has been my best friend and greatest source of strength during my PhD

years with her unfathomable love and immense sacrifice. The happiest moment of my

life arrived when our daughter, Anousha, was born. I feel so proud to have shared

my PhD journey with my family and so I end with the following dedication.

To my mother, Ranu

To my father, Sanjiban

To my sister, Srimoyee

To my daughter, Anousha

To my beloved wife and my greatest strength, Sucharita

Contents

Abstract ii

List of Illustrations x

List of Tables xiii

1 Introduction 1

1.1 Thesis Statement . 7

1.2 Organization of this Dissertation . 8

2 Related Work 10

3 Background 23

3.1 Dynamic Task Parallelism . 23

3.2 Habanero-C: Intra-node Task Parallelism 27

3.2.1 HC Task Model . 27

3.2.2 HC Data Driven Task Model 30

3.2.3 HC Runtime . 31

4 Habanero-C Runtime Communication System 35

4.1 HCMPI Programming Model . 38

4.1.1 HCMPI Structured Communication Task Model 41

4.1.2 HCMPI Message Driven Task Model 42

4.1.3 HCMPI Implementation for MPI Blocking Semantics 43

4.1.4 HCMPI Collective Synchronization Model 45

4.2 HC-COMM Runtime Implementation 46

viii

4.3 Results . 51

4.3.1 Micro-benchmark Experiments 51

4.3.2 UTS Case Study: . 55

4.4 Summary . 68

5 Locality Control of Compute and Data 69

5.1 Research Contributions . 70

5.2 The Habanero Asynchronous Partitioned Global Name Space Model . 71

5.2.1 HAPGNS Programming Model 72

5.2.2 Implementation . 75

5.2.3 Results . 77

5.3 Habanero-C Tuning Framework . 79

5.3.1 Hierarchical Place Trees for Spatial Locality 80

5.3.2 Tuning Framework for Spatio-Temporal Task Locality 83

5.3.3 HPT Implementation . 86

5.3.4 Tuning Tree Implementation 93

5.3.5 Results . 95

5.4 Summary . 107

6 Task Synchronization for Iterative Computation 108

6.1 Past Work on Phaser Synchronization Model 110

6.1.1 Phaser Programming Model in HJ 111

6.1.2 Hierarchical Phasers for Tree-based Barriers in HJ 116

6.1.3 Phaser Implementation in HJ 119

6.2 Research Contributions . 121

6.3 Phasers for Multicore Synchronization 122

6.3.1 Programming Model for Habanero-C 122

6.3.2 Phaser Data Structure . 124

6.3.3 A Generalized Tree-based Phaser Synchronization Algorithm . 128

ix

6.3.4 Results . 140

6.4 Phasers for Manycore Synchronization 144

6.4.1 Optimization Using Hardware Barriers 145

6.4.2 Optimization Using Thread Suspend and Awake 146

6.4.3 Adaptive Phasers . 147

6.4.4 Memory Optimizations . 148

6.4.5 Results . 148

6.5 Phasers for Hybrid Synchronization 151

6.5.1 Implementation . 153

6.5.2 Results . 155

6.6 Summary . 157

7 Conclusions 159

Bibliography 163

Illustrations

3.1 An example code schema with async and finish constructs 28

3.2 Task parallel programming using async and finish1 29

3.3 Deque operations for a workstealing runtime 33

4.1 HCMPI Structured Communication Tasks: Starting asynchronous

communication and waiting for for its completion. 42

4.2 HCMPI Await Model . 43

4.3 Using the finish construct in HCMPI. A finish around HCMPI Irecv, a

non-blocking call, implements HCMPI Recv, a blocking call. 44

4.4 HCMPI Wait and Status Model . 45

4.5 HCMPI Barrier Model . 46

4.6 The HC-COMM Intra-node Runtime System 47

4.7 Lifecycle of a Communication Task 48

4.8 HC-COMM DDF Runtime . 49

4.9 Thread Micro-benchmarks for MVAPICH2 on Rice DAVinCI cluster

with Infiniband interconnect . 53

4.10 Thread Micro-benchmarks for MPICH2 on Jaguar Cray XK6 with

Gemini interconnect . 54

4.11 Scaling of UTS on MPI. 59

4.12 Scaling of UTS on HCMPI. 60

4.13 HCMPI speedup compared to MPI 61

xi

4.14 HCMPI speedup compared to MPI on UTS T3XXL with extra

communication worker . 62

4.15 HCMPI Speedup compared to MPI+OpenMP on UTS T1XXL 66

5.1 Simplified Smith-Waterman implementation 74

5.2 Smith-Waterman dependency graph, its hierarchical tiling and

execution wavefronts . 75

5.3 Scaling results for Smith-Waterman for 8 to 96 nodes with 2 to 12 cores 78

5.4 An example HPT structure . 82

5.5 Tuning tree of queues matches the target platform structure 84

5.6 Tuning action to unpack a group and move down the steps 86

5.7 An example of a HPT XML description 87

5.8 Bucket deque expansion . 90

5.9 Bucket deque reuse after contraction 91

5.10 Releasing steps from tuning tree to domain tree 93

5.11 Cholesky decomposition dependences 96

5.12 Cholesky decomposition execution times for various tile sizes 97

5.13 Tuning actions on GroupC, the outer level group in Cholesky 100

5.14 Set1 Cholesky Tuning experiments on 2000 x 2000 matrix 101

5.15 Set2 Cholesky Tuning experiments on 6000 x 6000 matrix 101

5.16 Rician denoising dependencies . 103

5.17 Grouped rician denoising steps . 103

5.18 Pyramid computation for tiles in successive iterations 104

5.19 Rician Denoising performance comparison of untuned vs tuned 104

6.1 Phaser Mode Lattice . 111

6.2 Semantics of synchronization operation 111

6.3 Single-level phaser with single master 117

xii

6.4 Hierarchical phaser with sub-masters 118

6.5 Data structures for flat phaser . 119

6.6 Data structures for tree phaser . 120

6.7 Barrier Example . 124

6.8 Generalized Phaser Tree Data Structure (Degree = 2) 125

6.9 Barrier Synchronization on x86 node 141

6.10 Barrier Synchronization on Power7 node 142

6.11 Phaser barrier overhead on a dual-CPU Niagara T2 machine 143

6.12 Cyclops64 Architecture Details . 144

6.13 SRAM optimization for phasers on Cyclops64 149

6.14 Barrier and Point-to-Point Microbenchmarks 150

6.15 HCMPI Phaser Barrier Model . 152

6.16 HCMPI Phaser Accumulator Model 154

6.17 HCMPI Phaser Barrier . 155

Tables

1.1 The exascale challenge . 2

4.1 HCMPI Types . 39

4.2 HCMPI API for point-to-point and collective communication 40

4.3 HCMPI Runtime API . 41

4.4 Best UTS configurations on Jaguar for 64 compute nodes 57

4.5 UTS overhead analysis for T1XXL runs on Jaguar 63

6.1 Semantics of phaser operations as a function of registration mode on ph114

6.2 Cyclops64 TNT APIs for Hardware Synchronization Primitives 145

6.3 HCMPI PHASER API . 151

6.4 HCMPI Ops . 153

6.5 EPCC Syncbench with MVAPICH2 on Infiniband 157

xiv

List of Algorithms

1 Push operation for resizable deques . 92

2 PhaserRegistration . 129

3 InsertSigIntoPhaserTree . 131

4 FixSubPhaser . 132

5 PhaserSignal . 134

6 PhaserWait . 135

7 doWaitTree . 136

8 doWaitNode . 136

9 doWaitPhaser . 137

10 PhaserDropSig . 139

1

Chapter 1

Introduction

As we head towards exascale computing, future software technology needs to embrace

systems using homogeneous and heterogeneous many-core processors [1]. Based on

the design targets from the exascale challenge program by DARPA [2] shown in Ta-

ble 1.1, future extreme-scale systems are projected to use up to O(103) processor cores

per compute node and O(106) nodes overall. The primary software challenges on such

systems are to efficiently express and manage large scales of parallelism of variable

granularity (to address platform heterogeneity) on constrained energy budgets and

being resilient to faults and failures. The performance of these systems will heavily

depend on the entire software stack, spanning programming models, languages, com-

pilers, runtime systems and operating systems. It is critical to find software solutions

that can effectively exploit the extreme-scale of combined inter-node and intra-node

parallelism. Current state-of-the-art techniques that combine distributed- and shared-

memory programming models, have demonstrated the potential benefits of combining

both levels of parallelism, including increased communication-computation overlap,

improved memory utilization, and effective use of accelerators. However, these hybrid

programming approaches often require significant rewrites of application code and

assume a high level of programmer expertise.

One popular direction is to integrate asynchronous task parallelism with a Parti-

tioned Global Address Space (PGAS) [3] model as exemplified by the DARPA HPCS

programming languages (Chapel [4] and X10 [5]), and by recent multithreading ex-

2

Systems 2015 2018

System Peak Flops 100-200 Peta 1 Exa

System Memory 5 PB 10 PB

Node Performance 400 GF 1-10 TF

Node Memory Bandwidth 100 GB/s 200-400 GB/s

Interconnect Bandwidth 25 GB/s 50 GB/s

Node Concurrency O(100) O(1000)

System Size (Nodes) 500000 O(Million)

Total Concurrency 50 Million O(Billion)

Storage 150 PB 300 PB

I / O 10 TB/s 20 TB/s

Power 10 MW 20 MW

Table 1.1 : The exascale challenge

tensions to established PGAS languages (UPC [6] and CAF [7]). PGAS programming

models offer HPC programmers a single-level partition of a global address space with

control of data-to-thread affinity/locality. In contrast, the Message Passing Interface

(MPI) [8] still provides an effective path for implementing the majority of applications

on the largest supercomputers in the world. Although it has been shown that there

are certain classes of applications for which the PGAS models are superior, many

challenges still remain for the PGAS languages to catch up with MPI in supporting

these applications due to the overheads associated with maintaining a global address

space, as well as the software engineering challenges of migrating MPI-based codes

to PGAS. On the other hand, harnessing O(103)-way parallelism at the intra-node

3

level will be a major challenge for both MPI and PGAS programmers, for multiple

reasons. The parallelism will have to exploit strong rather than weak scaling, since

the memory per node is not increasing at the same rate as the number of cores per

node. Finally, programs will have to be amenable to dynamic adaptive scheduling

techniques to deal with heterogeneous processors, non-uniform clock speeds and other

load imbalances across cores due to power management, fault tolerance, and other

runtime services.

Dynamic task parallelism is one model that is well suited to addressing these im-

balances at the intra-node level. It is now recognized as a programming model that

combines the best of performance and programmability for shared-memory computa-

tions. Dynamic task parallel languages, such as Habanero-C [9], Cilk [10] and X10 [5],

can express fine-grained parallelism with the help of lightweight tasks and are assisted

by efficient load balancing runtime systems for achieving scalable performance. The

runtimes typically depend on hardware support for fast atomic operations to im-

plement high frequency task load-balancing operations on shared-memory multicore

systems. While recent MPI [8] standards have made provisions for remote atomic

communication calls, such as MPI COMPARE AND SWAP, it is infeasible to replicate the

current shared-memory runtime model at the inter-node level because the latency of

load balancing operations will be prohibitively high at the inter-node level. Further,

whereas in a shared-memory multithreaded work-stealing runtime, a thief does not

interrupt the work of the victim during a steal operation, distributed work-stealing

usually requires victim participation. Future runtimes will need specific hardware

and software support to address these problems.

In our work, we focus on the critical role played by the runtime system in en-

abling programmability in upper layers of the software stack that interface with the

4

programmer, and in enabling performance in lower levels of the software stack that

interface with the hardware. The scope of our research can be broadly classified

into three specific areas where the runtime system will have a major impact on the

performance.

• Designing scalable runtime communication systems

• Enabling locality control of compute and data at runtime

• Efficient synchronization for iterative computations in long running tasks

This work builds on the Habanero-C (HC) language [9, 11] which provides dy-

namic asynchronous task parallelism support with the async and finish constructs

on a shared-memory platform. We have implemented the phaser task synchroniza-

tion construct and the Hierarchical Place Tree (HPT) model in HC, based on past

work [12, 13]. A phaser is a unification of point-to-point and collective task synchro-

nization. It is an efficient synchronization model for applications with long running

synchronized tasks. A HPT is a user defined runtime data structure that allows tasks

to be scheduled with affinity towards a core or set of cores. The affinity is modeled

as a tree of places which typically represent the memory hierarchy of the system and

the runtime executes tasks which are closer in the hierarchy first before going further

out. This allows the user to execute parallel tasks which share data access to benefit

from spatial locality at some level of the memory hierarchy.

We have integrated the intra-node HC model with a communication layer (cur-

rently MPI), to create a runtime execution model for distributed systems, called

HC-COMM. Our goal is to ensure scalable performance on extreme-scale systems

along with easy portability of existing applications and enhanced programmability

for future applications. The HCMPI (Habanero-C MPI) programming model, offers

5

a practical approach for programmers wanting to take incremental transitional steps

starting from either a shared- or distributed-memory program. It is a unified pro-

gramming model for shared and distributed memory systems with integrated support

for asynchronous intra-node tasking and asynchronous inter-node communication us-

ing the MPI message passing interface. All MPI calls are treated as asynchronous

tasks, thereby enabling unified handling of messages and tasking constructs. Point-to-

point communication tasks can be offloaded from the computation task’s critical path.

System-wide collective synchronization is achieved with integrated task- and process-

level collective synchronization using phaser primitives. We achieve our portability

goals by providing easy transitional steps for introducing shared-memory task paral-

lelism to sequential MPI programs, or for introducing MPI calls to shared-memory

task parallel programs.

We also introduce HAPGNS (Habanero Asynchronous Partitioned Global Name

Space) as a distributed data-driven programming model that integrates intra-node

and inter-node data-flow programming. This model does not require any knowledge

of MPI. In this model, producer and consumer tasks, called data-driven tasks, com-

municate data using put and get operations. Consumer tasks specify the set of data

dependences using distributed data driven future (DDDF) objects. A DDDF object

carries a globally unique identifier which helps tasks to communicate data in a global

name space.

The HC-COMM runtime design uses dedicated communication cores on the sys-

tem. Our approach is motivated in part by the fact that future extreme scale systems,

driven by a limited power budget, will have reduced shared-memory capacities, lead-

ing to an increased focus on efficient communication. For applications, this translates

to exploiting overlaps between computation and communication for improved per-

6

formance. Our design is based on the premise that it will be feasible to dedicate

one or more cores per node to serve as communication workers in future many-core

architectures. Thus, a program’s workload can be divided into computation and com-

munication tasks that run on computation and communication workers respectively.

Our experimental results show that even for today’s multicore architectures, the ben-

efits of a dedicated communication worker can outweigh the loss of a computation

resource. Further, the foundational synchronization constructs in our programming

model such as finish, phaser and await can be applied uniformly to computation tasks

and communication tasks.

We propose data locality optimization techniques at both inter-node and intra-

node level. Locality aware distribution functions in the HAPGNS model control inter-

node data locality. Within a node, programs can benefit from spatial and temporal

data reuse at cache hierarchies with the help of the HPT runtime data structure.

We have designed a tuning framework which can enable performance experts, to

contribute performance improvements via tuning operations on existing applications.

Tuning experts with detailed knowledge of a machine’s characteristics can guide or

tune an application’s schedule at runtime using a set of API functions. The tuning

framework layer, which is an abstraction on top of the task execution runtime, is

able to dynamically decide where to execute a task. This decision power enables the

tuning expert to co-locate tasks that will benefit from spatial and/or temporal data

reuse.

An HCMPI program follows a task parallel model within a node and a SPMD

model across nodes. It supports many commonly-used synchronous, asynchronous

and collective MPI operations. We present a synchronization scheme for combined

inter-node and intra-node collective operations using the phaser model.

7

1.1 Thesis Statement

Programming extreme-scale platforms can be aided by a unified runtime system that

combines inter-node communication with intra-node computation, extends work-stealing

schedulers with hierarchies and affinities for locality, and supports scalable synchro-

nization primitives for long running iterative tasks.

Runtime systems are expected to have a major impact on the performance of

extreme-scale systems. They play a critical role in enabling high performance, pro-

grammability, and productivity for dynamic task parallel systems on shared-memory

platforms. Runtime systems that support dynamic task parallelism have demon-

strated scalable performance for shared-memory programs. However, using such run-

times for extreme-scale computing throw up few key challenges.

First, a scalable runtime communication system will be a key enabler for extreme-

scale computing. The runtime should leverage benefits of asynchronous dynamic task

parallel programming models, as well as the scalability of popular communication

models. It has to overlap communication with computation as well as manage con-

tention on the communication sub-system.

Second, locality of computation and data is critical for performance and lower

energy resulting from data reuse on faster memories and redundant communication

avoidance. The runtime has to leverage both spatial and temporal locality of com-

pute and data. A programmer should be able to express affinities between task

computations and associated data to help the runtime make locality guided schedul-

ing decisions. Abstracting the hardware characteristics with an appropriate machine

model will also help the runtime in making intelligent scheduling decisions.

Third, efficient synchronization models for iterative computations in long running

8

tasks will be an important scalability requirement for task parallelism. The model

should support the expression of various synchronization patterns. The runtime sys-

tem should enable collective synchronization across compute nodes with unified prim-

itives at intra-node and inter-node levels, as well as leverage hardware support when

available.

Runtime support for scalable locality aware task scheduling and synchronization

at both intra-node and inter-node levels are key requirements for extreme-scale com-

puting. Addressing these challenges will lead us to tackle further issues in future such

as managing heterogeneity, energy efficiency and resiliency.

1.2 Organization of this Dissertation

The rest of this dissertation is organized as follows.

• Chapter 2 summarizes related work in this area, and compares the results and

approaches in this dissertation with past work.

• Chapter 3 introduces the Habanero-C research language which forms the back-

ground to our work. In this chapter, we also explain the intra-node implemen-

tations of the Habanero-C dynamic task parallel runtime.

• Chapter 4 presents the HC-COMM runtime communication system and the

HCMPI programming model. We present experimental results on current large

scale systems that validate the design of our runtime system for extreme-scale

computing.

• Chapter 5 describes the locality control framework for computation and data.

We present the HAPGNS programming model that supports user directed data

9

distribution functions. We provide examples and results to demonstrate the

efficacy of our approach. This chapter also describes the design and implemen-

tation of the Habanero-C locality tuning framework. Our experimental results

show improvements on current optimized implementations of important appli-

cations.

• Chapter 6 describes the design and implementation of phaser synchronization for

the Habanero-C language. We present a tree based intra-node synchronization

algorithm with applicability to both barriers and point-to-point synchronization

modes. We show extensions of the phaser barrier model for inter-node synchro-

nization. We also present a phaser design that can adapt at runtime to leverage

hardware support for synchronization.

• Chapter 7 presents our conclusions. We review the approaches and results of

our research.

10

Chapter 2

Related Work

The computing landscape has undergone a shift from the sequential von Neumann

execution model to a parallel computing model. Increasing single-thread performance

as a direct outcome of higher clock frequencies is no longer feasible due to power and

energy constraints. Subsequently, the focus has shifted to exploiting parallelism at

the multiprocessor-level as a practical approach for improving performance. We have

witnessed a surge of multicore processors across all computing platforms ranging from

HPC systems to desktops, and in some cases to mobile and embedded systems as well.

As a result, in a fundamental paradigm shift, software technology has now become

the driver of system performance due to its role in exposing the parallelism inside

application programs. There has been much research in the recent past related to

programming systems for such platforms, and in this chapter, we shall review some

of the important related work in this area.

Parallel computers of the past relied on an interconnection of high performance

serial processors. With the advent of ubiquitous tightly coupled multicore processors

with memory hierarchies consisting of shared levels of caches, it has became necessary

to develop novel software strategies to take advantage of the benefits shared-memory

intra-node parallelism. The evolution of programming systems has created a multi-

dimensional view of the software technology necessary to program a combination

of inter-node and intra-node parallelism. Choice of the programming model, the

execution model, the view of memory, the communication model, the synchronization

11

model, and the locality/affinity control model for compute and data are some of

the key design parameters for these programming systems. Designers of software

technology for such systems are faced with distinct parallel programming questions.

• What is the parallel control model?

• What is the model for sharing and communication?

• What are the synchronization models and how to avoid their overheads?

The popular parallel control models of today can be classified into the data par-

allel model with a single thread of control, the dynamic thread model and the single

program multiple data (SPMD) model. Data parallelism emphasizes the distributed

nature of the data and has been shown to scale on large number of parallel processors

when the application is regular. The dynamic thread model allows creation of parallel

computation at runtime with relatively low overhead and is best geared towards han-

dling imbalances in the system resulting from workloads, heterogeneity, non-uniform

clock speeds and failures. The SPMD model emphasizes the distributed nature of

both compute and data where the total amount of available parallelism is fixed and

parallel tasks typically communicate using message passing techniques. SPMD mod-

els are the most popular models for current distributed systems, because it has the

lowest overhead of the three (but not the most generality).

The sharing and communication models are primarily of two kinds, the load / store

model for global shared address spaces and the message passing model for distributed

address spaces. All global shared address spaces are implemented by a communication

layer which abstracts the physical distributed memory from the user and presents a

view of shared memory to the program. Although there is an additional overhead

12

associated with the extra communication layer, programmers have found this to be a

more elegant and productive alternative to dealing with physical distributed memory.

Traditional synchronization models include collective operations (such as barriers

and reductions) [14, 15, 16, 17, 18], and point-to-point operations (such as busy-

waiting on flags, semaphores, data flow synchronization and directed communication

messages) [19, 20, 21]. Futures [22, 23] are an embodiment of the data flow depen-

dence model. A future is a data object passed from the producer to the consumer to

serve as the value of computation performed in a future order of evaluation. These

synchronization operations vary in the degree of asynchrony supported in the partici-

pating tasks. Task data flow is an example of a model that is inherently asynchronous.

Asynchronous collectives such as barriers and reductions are now finding wide adop-

tion through popular standards such as MPI [8]. Task termination constructs such

as X10’s finish [24] and Chapel’s sync [25] are collective synchronization models that

overlap computation and communication through the use of continuation tasks. (A

continuation [26] refers to the computation context required for a task to start exe-

cution at a certain point in the program.)

One of the most popular programming models for distributed memory systems is

the Message Passing Interface (MPI) [27]. MPI is a standard specification [8] for a

library interface for which there exists multiple implementations. The computation in

a MPI program is distributed among processes, known as ranks. Processes maintain

their own local memory and communicate data as messages. MPI’s point-to-point

(P2P) model of message passing is a two sided model, with a sender and receiver

process. There is also support for collective synchronization primitives and more re-

cently for distributed atomics [8]. MPI supports communication and computation

overlap through asynchronous synchronization operations, both P2P and collective.

13

Although there is no support for remote compute placement, the user can specify

affinity amongst processes using the communicator model. The communicator topol-

ogy provides a way for mapping heavily communicating processes onto computation

resources that are close to each other for improved locality [28, 29]. MPI has been

widely used in scientific applications (having both C and Fortran bindings), and has

been shown to scale on large systems with hundreds of thousands of processors under

right conditions [30, 31, 32].

Cera et al. [33] evaluate MPI-2’s dynamic processes, and whether they might be

an efficient way of supporting dynamic task parallelism in MPI. MPI-2’s dynamic

processes allow the dynamic creation of new MPI processes in the MPI runtime using

MPI Comm spawn. While this maintains a familiar API, all intra- and inter-node

parallelism is done using MPI processes with inter-process communication, which

can introduce significant overheads compared to communicating in a shared address

space.

In high-performance communication systems such as Nemesis [34] and Portals [35],

aggressive optimizations are applied to reduce intra-node message passing latency by

bypassing queues. While most MPI implementations can differentiate whether a

communication between two MPI processes is between nodes or across nodes, and

optimize intra-node message passing using shared-memory, the node-level core and

memory architectures are mostly ignored, limiting certain optimizations that use

shared resources on a node, such as shared caches. The MPI model cannot take

advantage of parallel algorithms for shared memory and its data structures. Due to

this limitation many users have modified their programs from the ”MPI everywhere”

approach to a MPI + threads model. Extending MPI with threads, known as hybrid

MPI, enables programs to use intra-node parallelism as a shared memory approach.

14

One of the most popular shared-memory models used in the hybrid MPI ap-

proaches is OpenMP [36]. OpenMP is also a standard specification with multiple

implementations. It is a collection of compiler directives, library routines, and en-

vironment variables that supports both SPMD and dynamic tasking programming

models. Parallel regions of computation can be started in SPMD mode in which

parallel loops are executed through worksharing constructs. The OpenMP synchro-

nization model allows barrier and collective synchronization in parallel regions while

the dynamic tasking model allows for specific task dependencies and taskwait syn-

chronization. OpenMP 4.0 [37] allows compute affinity to be expressed with the proc

bind clause to specify the places to use for the threads in the team within the parallel

region. The places for machine abstraction can be described through environment

variables and accessed as ICV (internal control variables). The master, close and

spread parameters can specify the distribution of new compute tasks, and the static

schedule clause can be used to enforce affinity across multiple loop constructs.

In most hybrid MPI/OpenMP programming practices [38, 39, 40, 41, 42], compu-

tation is performed in OpenMP parallel regions, and MPI operations are performed

in the sequential path of the execution, outside a parallel region. In this approach,

OpenMP parallel threads do not participate in inter-node operations. This pattern

limits the flexibility of using asynchronous MPI operations for latency hiding and com-

putation/communication overlap. It is also difficult to fully utilize the bandwidth of

multiple network interfaces that are commonly available in high-end large-scale sys-

tems. If all threads are allowed to issue MPI communication in hybrid MPI, the

program has to run in multithreaded mode for the MPI runtime. Multithreaded

communication increases the contention on the MPI subsystem and may degrade

performance dramatically in some MPI implementations.

15

PGAS (Partitioned Global Address Space) languages depart from the message

passing model by providing a global memory address space view to the programmer

with a portion of the memory being local to each process or thread. PGAS attempts

to combine the advantages of a SPMD programming style for distributed memory

systems (as employed by MPI) with the data referencing semantics of shared memory

systems. One of the well-known PGAS languages is UPC (Unified Parallel C) [6].

UPC uses SPMD parallelism, with collective communication for data-parallel style

programming [43]. Task programming is also possible through libraries on top of

UPC. It provides an explicitly parallel execution model with local and shared ad-

dress spaces and a one-sided communication model. Variables with a shared qualifier

are treated as part of the global shared memory (arrays can have layout specifiers).

Popular UPC implementations, such as Berkeley UPC [44], use the GASNet [45] com-

munication layer. GASNet provides support for remote data and compute placement

through efficient one-sided communication and active messages. Computation and

communication overlap is achieved through one-sided puts and gets, while comple-

tion is achieved through sync operations on handles. Studies on the PGAS model [46]

have shown that threads, processes and combinations of both are needed for maxi-

mum performance, with some unavoidable overheads such as locking overhead in the

thread version and network contention in the process version. The synchronizations

model supports collectives (full barriers, split-phaser barriers), notify / wait pairs,

locks and fences.

Coarray Fortran (CAF) [7] is a PGAS language based on extensions to Fortran

90. It has a SPMD model intended for running across compute nodes. CAF is

a shared-memory programming model based on one-sided put/get communication.

CAF 2.0 [47] can dynamically allocate globally shared data as coarrays and directly

16

reference remote data using simple language extensions. Communication is done with

one-sided put and get operations. The synchronization model includes events, locks

and locksets. Events provide a way to allow delayed execution of tasks based on

the satisfaction of a condition. The user can express compute affinity by creating

process subsets known as teams. Team synchronization includes barriers, finish, and

collectives including broadcast, reduce, allreduce, gather, allgather, scatter, scan,

shift, alltoall. Asynchronous collectives and copy operations achieve computation

and communication overlap. One can use function shipping to create dynamic multi-

threaded parallelism within and across nodes.

Titanium [48] is an explicitly parallel dialect of Java for SPMD parallelism. Ti-

tanium provides a global memory space abstraction whereby all data has a user-

controllable processor affinity through a type system, but parallel processes may di-

rectly reference each other’s memory to read and write values or arrange for bulk

data transfers [49]. It has support for multi-dimensional arrays, points, rectangles

and general domains and user-defined immutable classes (often called ”lightweight”

or ”value” classes). The language has a notion of single values that are used to ensure

coherence at synchronization points, as well as soundness guarantees in single state-

ments. A set of expression rules enable coherence by inserting conservative checks

statically. The Titanium compiler make aggressive optimizations for unordered loop

iterations and analyzes both synchronization constructs and shared variable accesses

to prevent deadlocks on barriers.

Chapel [4] is an emerging parallel programming language with support for a mul-

tithreaded execution model via high-level abstractions for data parallelism, task par-

allelism, concurrency, and nested parallelism. It supports a global-view data and

control model with an implicit communication model. Synchronization constructs

17

include sync, cobegin and coforall. The locale construct allows remote placement of

data and compute. For example, ”on locale {stmt};” assigns stmt execution to a

specific locale, while ”on var do {stmt};” assigns stmt to the locale associated with

var. Chapel supports many data aggregates such as records, classes, tuples, ranges,

domains, arrays and maps. Chapel permits users to gradually optimize code from

high-level abstract representations.

The X10 [5] language integrates asynchronous task parallelism with the PGAS

model (APGAS) with support for programming within a node, across nodes, and

across accelerators (GPUs, others). Tasks can be dynamically created using the

async construct while the finish construct provides the mechanism for waiting for

their completion. X10 allows locality control through the use of places and support

for multi-dimensional arrays over a variety of regions and distributions. Stencil com-

putations can be described compactly using regions and iterations. Synchronization in

X10 is achieved through constructs such as finish, atomics and clocks. The X10 clock

is generalization of barrier operation that supports dynamic task registration. There

is also support for map-reduce parallelism using collecting finish, such that tasks

spawned within the control of a finish can send results back to the finish, where the

results are combined with a reducer. X10 supports arbitrary communication between

tasks using RPC. The communication layer uses the X10RT network transport API.

Global data on a distributed heap memory is referenced through globalRef handles.

A place in X10 is a virtual shared-memory multi-processor: a data and computational

container with a finite (though perhaps changing) number of hardware threads and a

bounded amount of shared memory, uniformly accessible by all threads in the same

place. It is used for both data distribution and computation distribution. Applica-

tion data may be distributed among places using defined distribution policies. The

18

data processed by a task should be associated with the task’s target place for data

affinity. The overhead of accessing remote data (data in other places) by an activity

is higher than the overhead of accessing local data (data in current place). To read

a remote location, a task should spawn another task asynchronously, with a future

handle used to read the results. For the best affinity between data and computation,

a task should be spawned in the place with the most data it is going to process.

The Sequoia programing language and runtime [50] were designed to facilitate the

development of portable applications across machines of different memory hierarchies.

In Sequoia, system memory hierarchy is abstracted using a generic model, the Parallel

Memory Hierarchy (PMH) model [51]. Programmers view memory systems as a

tree, each node representing a memory module of the system. A Sequoia program is

organized in a recursive hierarchy. A program task, which operates entirely within

its own private address space on a tree node, spawns child tasks onto the child nodes

of the tree. Parent tasks may partition data into blocks that are to be processed

by children tasks. Bikshandi et al [52] proposed Hierarchically Tiled Array (HTA) to

facilitate the direct manipulation of tiles across processors. Their programming model

distributes the array data but permit arbitrary element access. The HTA model

focuses on tiling the array data and exports this explicit information to compiler

to partition loop for locality or parallelism. Concurrent Object Oriented Language

(Cool) [53] extends C++ to express a concurrent programming model and runtime

assisted locality optimization. Cool provides abstractions for the programmer to

supply hints about the data objects referenced by parallel tasks. These hints are used

by the runtime system to appropriately schedule tasks and migrate data, and thereby

exploit locality in the memory hierarchy.

Charm++ [54] is a C++-based parallel programming system based on the migrat-

19

able objects programming model. In this model, a program is decomposed into com-

putation units called chares. Interactions between chares is achieved asynchronous

messages that invoke an entry method on a remote object. The runtime manages a

work-pool of chare seeds, that is, newly created chares that have not been scheduled

for execution. The synchronization model in Charm++ allows structured parallelism

completion scopes known as the structured dagger approach. There is also support for

futures and sync constructs. Chare arrays can specify data aggregates for distributed

computing while chare groups and nodegroups can used to place compute at logical

distributed places. Overall, chare collections help to express affinity among compute

tasks while the machine topologies can be abstracted using the TopoManager.

The StarSs [55] programming framework consists a family of programming mod-

els based on data-flow execution of sequential programs using dynamic asynchronous

tasks. The memory view of the programmer is a flat global address space where coher-

ence and consistency is managed by the runtime. The OmpSs [56, 57] programming

model extends StarSs with OpenMP syntax. The OmpSs execution model is a thread

pool model where OpenMP parallel directives are ignored. All threads are created on

startup and one of them executes main. Other threads pull work from the task pool

and push newly created work into the task pool. This model also provides point-to-

point inter-task synchronizations using task dependences (in, out, and inout) and has

support for heterogeneity through the target clause. The communication model in

this framework uses MPI where all MPI calls are taskified. An extra communication

thread is created which blocks for blocking MPI (e.g MPI Send). Its preemption is

managed by the runtime.

The Legion [58] programming model and runtime uses dynamic tasks for compu-

tation. Legion is organized around logical regions, which express both locality and

20

independence of program data, and tasks, functions that perform computations on

regions. The runtime system dynamically extracts parallelism from Legion programs,

using a distributed, parallel scheduling algorithm that identifies both independent

tasks and nested parallelism. Legion also enables explicit, programmer controlled

movement of data through the memory hierarchy known as region passing. Legion’s

data mapper and compute mapper enable remote placement of data and tasks based

on locality information via a mapping interface.

The ParalleX [59] runtime system provides a unified programming model for par-

allel and distributed applications using actions. The memory view of the system

is called active global address space where every object allocation is given a glob-

ally unique identifier (GUID). The communication model uses active messages called

parcels which use GUIDs to communicate data. ParalleX process localities are used

as a machine abstraction. Computation actions are both data-driven and message-

driven and can be given a locality id parameter for specific placement.

TASCEL [60] (Task Scheduling Library) is a framework to address the challenges

associated with programming abstractions supporting finer-grained concurrency. It

supports various threading modes together with SPMD and non-SPMD execution.

Dynamic tasks are supported only in non-SPMD mode. It uses an active message

framework built on multithreaded mode MPI. The synchronization model supports

finish while asynchrony is allowed through retentive work-stealing.

SWARM [61] (SWift Adaptive Runtime Machine) is runtime framework that sup-

ports dynamic task parallelism using the codelet execution model on distributed mem-

ory. The communication model uses the remote procedure calls (RPC) framework.

The synchronization model for task dependences are supported only within a compute

node. There is also support for collectives. Asynchronous execution for computation

21

and communication overlap is achieved through continuation codelets. SWARM uses

a locale tree machine abstraction for expressing computation affinity in locale sched-

ules.

The PaRSEC [62] runtime scheduler and execution controller is framework for

scheduling computation tasks in a program that is represented as a directed acyclic

graph (DAG) using a unique internal representation called JDF. PaRSEC assigns

computation tasks to the worker threads and overlaps communications and compu-

tations. Its uses workstealing for load balancing and improves locality guarantees by

enqueing newly created tasks in the local queue of the worker thread.

The distributed CnC [63] model creates dynamic tasks through a CnC graph spec-

ification of computation steps, data items and control tags. The view of the memory

in this model is a globally shared one. The communication model uses both socket

programming and MPI. The data driven execution model provides asynchronous ex-

ecution of tasks. Remote data placement is possible by pushing data to consumer

tasks while computation is distributed using predefined policies such as round-robin

or custom policies created through the tuner framework. Synchronization is explic-

itly handled through item collection put / get operations and control tags. Data

items in CnC are single-assignment objects, meaning there can only be one producer.

This makes CnC a deterministic model. I-Structures [20] were also single-assignment

constructs that support synchronization by allowing a single producer per memory

location. In systems supporting I-Structures, readers are forced to wait (often using

hardware support) for the producer to write during memory operations. M-Structures

[21] allow multiple assignments, but each value has a single producer.

The framework proposed by Fu and Yang [64] executes general DAG (directed

acyclic graph) computations with mixed granularities using a fast communication

22

mechanism. A dependence-complete task graph is built and a schedule is constructed

based on it. When a processor executes a task it issues receive operations for each

data it needs from its predecessors and send data to its successors. The communica-

tion module uses asynchronous RMA, buffered message-passing and communication

aggregation. Each processor needs to know remote addresses it needs to pull from

(or push to) and each data item at a processor is associated with a usage counter.

Jégou [65] relies on a task migration model to execute chunks of the program. A task

can fork independent subtasks but cannot communicate or synchronize with them.

A task can only access data from local memory. If the task needs to read/write vari-

ables located in others’ memory it must either spawn a remote task or migrate and

bring all its private data there to resume execution. Ramaswamy et al. [66] introduce

an annotated form of High Performance Fortran for extracting task and data par-

allelism from an application. It constructs a computation graph with a cost model

for scheduling data-parallel tasks and data transfers between them in a distributed

memory machine, attempting to do automatic scheduling for the programmer.

23

Chapter 3

Background

This work is motivated by the fact that future extreme scale systems will require

novel programming and runtime execution models to meet the challenge of program-

ming a system with up to O(106) computational nodes and O(103) cores per node

on a limited power and memory budget. Scalable performance on such a system will

require the programming model and underlying runtime to exploit intra node and

inter node parallelism effectively by overlapping high latency memory and communi-

cation operations with parallel computation. A typical shared memory task parallel

execution model with non blocking worker threads executing lightweight tasks serves

as a good starting point for achieving our goals. As such, we use the intra node

shared memory dynamic asynchronous task parallel execution model as the basis of

this research work. In the rest of this chapter we look at approaches for dynamic task

parallelism and provide a brief overview of the Habanero-C language.

3.1 Dynamic Task Parallelism

Dynamic asynchronous task parallelism has been an active research topic in the past,

and has been gaining popularity as a shared memory parallel programming model

for multi-core and many-core architectures. Modern languages and libraries provide

lightweight dynamic task parallel execution models for improved programmer produc-

tivity. Task parallelism refers to expressing the parallel computation as concurrent

24

fine grained tasks that execute on top of a runtime scheduler which is responsible for

scheduling and synchronizing the tasks across the processors. The two basic require-

ments of task parallelism is the ability to create asynchronous tasks and a way to

enforce ordering or dependences in the program via synchronization constructs. Task

parallelism subsumes data parallelism in that data parallelism may be expressed as

task parallelism but the converse is not true. Many platforms also provide efficient

constructs for embedding data parallelism within tasks. We can roughly classify task

parallelism implementations in three categories:

1. New languages, such as X10 [24], Chapel [25], and Fortress [67].

2. Extensions to existing languages, such as the Cilk [10] and OpenMP [68, 69]

extensions to C.

3. Libraries extensions that provides parallel APIs, such as Intel Threading Build-

ing Blocks [70].

There are many practical advantages and disadvantages to choosing a language or a

library approach [71]. A key advantage of a library-based approach to task parallelism

is that it can integrate with existing code easily without relying on new compiler

support. However, the use of library APIs to express all aspects of task parallelism

can lead to code that is hard to understand and modify, especially for beginning

programmers. A key advantage of a language-based approach is that the intent of

the programmer is easier to express and understand, both by other programmers and

by program analysis tools. However, a language-based approach usually requires the

standardization of new language constructs.

Cilk [10] is language for multithreaded parallel programming based on ANSI C.

Its current version, called Intel Cilk Plus [72], extends both the C and C++ pro-

25

gramming languages to support multithreading. Cilk adds dynamic asynchronous

task parallelism with few keywords: cilk, spawn and sync. The cilk keyword identifies

a function as a Cilk procedure, which is the parallel version of a C function. When

the spawn keyword is used to invoke a Cilk procedure, then a parallel task is created.

The sync statement in a Cilk procedure ensures that the task creates a join point for

all immediate children. A Cilk procedure contains an implicit sync at the end of the

function. This ensures that all transitively spawned tasks will be complete by the end

of the sync statement. Cilk’s spawn-sync model is known as fully strict. Fully-strict

computations can be scheduled with provably efficient time and space bounds using

work-stealing with the work-first policy [73].

OpenMP version 3.0 [74] introduced the task constructs for explicitly creating

tasks within a parallel region. The taskwait construct specifies a wait on the comple-

tion of child tasks generated since the beginning of the current task. OpenMP tasks

by default are tied to the thread that starts executing the task. This means that the

code after a taskwait suspension can only be executed by the thread that is holding

the task’s context. Using this style of synchronization, the runtime efficiency depends

heavily on the granularity of parallelism built into the program. The untied clause

lifts the restriction on tying to the thread but causes a restricted form of program-

ming. Untied tasks cannot depend on threadprivate variables and the user has to

employ task barrier constructs to ensure the safety of stack local variables.

Intel Threading Building Blocks (TBB) [70] is a C++ template based library ap-

proach for task parallelism. Tasks provides an abstraction over thread programming

with the library mapping the logical tasks onto physical threads. TBB provides algo-

rithms that concurrently perform work on collections of data resembling the Standard

Template Library (STL), such as a parallel for. The major drawback of parallel

26

libraries is that programmers must take care of creating, scheduling and managing

tasks and continuations. TBB allows creating a continuation task which would be

passed to all parallel predecessor tasks. Every new task task that gets created bumps

up the reference count on the continuation task and then bumps down once the task

execution completes. The TBB runtime schedules the continuation only when the

reference count reaches 0.

Chapel [4] is a high-level parallel programming language that implements a PGAS

(Partitioned Global Address Space) model. It is designed to be an imperative block

structured language but includes object-oriented programming and type-generic pro-

gramming. It can express different kinds of parallelism. Chapel provides constructs

for dynamic task creation using the begin keyword, and for task synchronization using

sync statements [25].

The X10 [24] language provides task parallelism using the async and finish con-

structs. Currently, X10 differentiates itself as a object-oriented programming lan-

guage that supports the APGAS (Asynchronous Partitioned Global Address Space)

programming model for distributed systems. X10 uses places for representing dis-

tinct computation resources which supports tasks being scheduled at remote places.

The finish construct in X10 provide a single termination scope for all async tasks cre-

ated (directly or transitively) to complete before execution can move past the finish

scope. This implies that the parent task which created a child task with the async

construct may finish execution before the child has finished. This model async-finish

model is known to be terminally strict. In fact, the Habanero programming model is

born out of X10’s [5] early versions.

27

3.2 Habanero-C: Intra-node Task Parallelism

The work in this dissertation builds on the Habanero-C (HC) research language being

developed at Rice University. HC extends the C programming language with shared-

memory dynamic asynchronous task parallelism. It support two forms of task parallel

programming models: structured and data-flow. Structured task parallelism uses the

async and finish constructs for exploiting intra-node parallelism. This is based on

the Habanero-Java [75] and X10 [5] task programming models, The language uses

the async construct to dynamically create new asynchronous tasks. The finish scope

construct creates a synchronization point for all asynchronous tasks created within the

scope to complete execution. A program written with finish and async is guaranteed

to never deadlock. The data flow model uses data-driven tasks (DDT) to express a

task parallel program typically visualized a task graph. A dependence between two

DDTs is expressed as a data driven future (DDF) object.

3.2.1 HC Task Model

The Habanero-C language supports structured task parallel programming in a ter-

minally strict model. In this model, every task has a defined termination scope.

When a parent task creates a child task for asynchronous execution, the child task

will inherit the enclosing termination scope of the parent. Subsequently, the parent

is allowed to finish execution before a child completes. Lightweight dynamic task

creation and termination is supported by the async and finish constructs. The state-

ment async〈stmt〉 causes the parent task to create a new child task to execute 〈stmt〉

asynchronously (i.e. before, after, or in parallel) with the remainder of the parent

task. The finish statement, finish〈stmt〉, performs a join operation that causes the

parent task to execute 〈stmt〉 and then wait until all the tasks created within 〈stmt〉

28

have terminated (including transitively spawned tasks). While Cilk spawn and sync,

or the OpenMP task and taskwait constructs have similar syntax and effects, the

async-finish constructs supports more general dynamic execution scenarios that are

difficult to express in Cilk or OpenMP [76]. Figure 3.1 illustrates this concept by

showing a code schema in which the parent task, T0, uses an async construct to create

a child task T1. Thus, STMT1 in task T1 can potentially execute in parallel with STMT2

in task T0.

//Task T0(Parent)

finish { //Begin finish

 async

 STMT1; //T1(Child)

 //Continuation

 STMT2; //T0

} //Continuation //End finish

STMT3; //T0

STMT2

async

STMT1

terminate
wait

T1 T0

STMT3

Figure 3.1 : An example code schema with async and finish constructs

Any statement can be executed as a parallel task, including for-loop iterations

and method calls. The finish statement, finish〈stmt〉, performs a join operation that

causes the parent task to execute 〈stmt〉 and then wait until all the tasks created

within 〈stmt〉 have terminated (including transitively spawned tasks).

Figure 3.2, shows a vector addition example of using async and finish. We use

loop chunking and each async task performs the addition on a chunk of data. The

IN keyword ensures that the task will have its own copy of the i variable, initialized

to the value of i when the task is created. This semantics is similar to the OpenMP

29

int PART_SIZE =16;

/* vector addition: A + B = C, size is modular of 16 */

void vectorAdd(float * A, float * B, float * C, int size) {

int i, parts = size/PART_SIZE;

finish for (i=0; i < parts; i++) {

async IN(i) {

int j, start = i*PART_SIZE;

int end = start + PART_SIZE;

for (j=start; j < end; j++)

C[j] = A[j] + B[j];

}

}

}

Figure 3.2 : Task parallel programming using async and finish1

firstprivate keyword.

While Cilk spawn and sync, or the OpenMP task and taskwait constructs have

similar syntax and effects, the async-finish constructs are more flexible and support

execution scenarios that are difficult to express in Cilk or OpenMP.

• finish defines a synchronization scope for transitively spawned async tasks; Cilk

and OpenMP dedicate an implicit sync upon return of a function, thus a task

created within a function cannot outlive the function. The Habanero-C model

1Illustrative Purposes Only

30

does not have this restriction.

• Cilk spawn requires a Cilk function as the body of the new task. async, also

OpenMP task, allow for arbitrary statements in the task body.

• In the async body, it is illegal to reference variables that are defined outside of

the async scope. Instead, we add IN, OUT and INOUT keywords for specifying how

the data is passed to and from a task. Habanero-C enforces a copy-in/copy-out

semantics for variables passed to the child tasks. For a variable modified with

IN (similar to the OpenMP firstprivate keyword) and INOUT, the variable

will be initialized with the value from the parent scope when the task is created.

For a variable reference modified with the OUT and INOUT modifiers, the value

that the variable contains will be copied to the corresponding variable in the

parent scope when the task is completed.

3.2.2 HC Data Driven Task Model

HC also supports a data-flow programming model through creation of tasks with data

dependences. These tasks, called data-driven tasks, (DDT) [77], synchronize with

other tasks through full-empty containers named data-driven futures (DDF). A DDT

specifies the set of data dependences using DDF objects in a await clause. This ensures

that the DDT will wait for all its dependences to be met before starting execution.

Producer and consumer DDTs, communicate data using put and get operations on

DDF objects. A DDF obeys the dynamic single assignment rule, thereby guaranteeing

that all its data accesses are race-free and deterministic. The Habanero-C language

interface for DDFs includes:

31

• Read: DDF GET() is a non-blocking interface for reading the value of a DDF. If

the DDF has already been provided a value via a DDF PUT() function, a DDF

GET() delivers that value. However, if the producer task has not yet performed

its DDF PUT() at the time of the DDF GET() invocation, a program error occurs.

• Write: DDF PUT() is the function for writing the value of a DDF. Since DDFs

have single-assignment values, only one producer may set its value and any

successive attempt at setting the value results in a program error.

• Creation: DDF CREATE() is a function for creating a DDF object. The producer

and consumer tasks use a pointer to DDF to perform DDF PUT() and DDF GET()

operations.

• Registration: the await clause associates a DDT with a set of input DDFs: async

await (ddf a, ddf b, ...) 〈stmt〉. The task cannot start executing until all

the DDFs in its await clause have been put.

Futures have been proposed by Baker and Hewitt in [22]. Implementations of the

concept can be seen in MultiLISP by Halstead [23], and in many other languages since.

It is possible to create arbitrary task graphs with futures, but each get operation on

a future may be a blocking operation unlike the await clause in DDTs. Additionally,

futures effectively requires that the DDF and async creation be fused, whereas DDTs

allow a separation between DDFs and asyncs.

3.2.3 HC Runtime

The Habanero-C task parallel runtime uses a limited set of worker threads to execute

unlimited number of lightweight tasks. When asynchronous tasks are dynamically

created, they are pushed onto the worker thread’s deque for execution in the future.

32

A deque, which is an abbreviation for double ended queue, holds scheduled tasks that

are ready for execution. The HC runtime uses a work-stealing algorithm to deal with

load-balancing issues on the deques. It supports two execution modes: work-first and

help-first. Before we delve into the details of these execution modes, let us look at

some terminology. In HC, a new asynchronous task can be dynamically created when

an async statement is executed by the program as mentioned earlier. The task which

creates the async is the parent task while the async itself is the child. The code in the

parent task after the async statement can now potentially execute in parallel with the

async. This code is called the async continuation and holds the current context of the

parent task.

In the work-first execution mode [73], the worker thread that excutes the async

statement will switch to the new async child task and temporarily suspends the parent.

The parent task will resume at the async continuation point. The worker pushes this

parent task continuation on to it’s deque before it executes the child async task. This

ensures that if there exists an idle worker looking for new work, then this continuation

can now be stolen by that worker to be executed in parallel with the async. If the

continuation is not stolen, then the worker which pushed it would pop it back to

execute it after it completes execution of the async. HC also supports the help-first

execution model [76]. In the help-first mode, the worker that executes an async

statement pushes the async child task onto the deque and continues execution of the

parent task’s async continuation. When the parent task suspends at the end of a finish

scope or simply completes execution, the worker can pop back the async if it had not

been stolen by other workers yet.

Figure 3.3 shows the deque operations in the HC runtime derived from past work

by Chase and Lev [78]. The contents of a deque are scheduled tasks that are ready

33

Worker	
(Deque	 Owner)	

head	

tail	

Push:	 Non-‐Concurrent	

deq-‐>buffer[deq-‐>tail	 %	 deq-‐>capacity]	 =	 el;	
deq-‐>tail++;	

Pop:	 Mostly	 non-‐Concurrent	

tail	 =	 deq-‐>tail;	 	
tail-‐-‐;	 	
deq-‐>tail	 =	 tail;	
mfence;	
head	 =	 deq-‐>head;	
size	 =	 tail	 -‐	 head;	
if	 (size	 <	 0)	 {	 	
	 	 	 	 deq-‐>tail	 =	 deq-‐>head;	 	
	 	 	 	 return	 NULL;	 	
}	
el	 =	 deq-‐>buffer[tail	 %	 deq-‐>capacity];	
if	 (size	 >	 0)	
	 	 	 	 return	 el;	
if	 (!hc_cas(&deq-‐>head,	 head,	 head	 +	 1))	
	 	 	 	 el	 =	 NULL;	
deq-‐>tail	 =	 deq-‐>head;	
return	 el;	

Steal:	 Concurrent	

head	 =	 deq-‐>head;	
tail	 =	 deq-‐>tail;	
if	 ((tail	 -‐	 head)	 <=	 0)	 	
	 	 	 	 return	 NULL;	
el	 =	 deq-‐>buffer[head	 %	 deq-‐>capacity];	
if	 (hc_cas(&deq-‐>head,	 head,	 head	 +	 1))	
	 	 	 	 return	 el;	
return	 NULL;	

steal	 tasks	

pop	 tasks	 push	 tasks	

Figure 3.3 : Deque operations for a workstealing runtime

to run. In a work-stealing runtime, the deque supports push and pop operations on

one end and a steal operation on the other end. Every deque in the HC runtime

has one associated worker which is the deque’s owner. Only the owner is responsible

for the push and pop operations on that deque. Non-owners perform steals on the

deque. When an asynchronous task is dynamically created, the worker pushes the

task onto it’s own deque. When a worker is done executing a task, it pops a new

one from it’s own deque and starts to execute that. If the worker’s deque is empty,

it tries to steal tasks from other deques that it does not own. A deque maintains a

head and a tail variable, one for each end as shown in Figure 3.3. The push operation

places the task on the deque and increments the tail. Since, the owner is the only one

pushing a task to the deque, this operation is non-synchronized. The pop operation

is non-synchronized except when there is only one task left in the deque. In that

case, the owner has to compete with other workers trying to steal that last task,

34

effectively turning into a pop into a steal. The steal operation has to be synchronized

since multiple workers may try to concurrently steal from one deque. A successful

compare-and-swap atomic operation of the deque head ensures a successful steal.

35

Chapter 4

Habanero-C Runtime Communication System

Effective combination of inter-node and intra-node parallelism is recognized to be a

major challenge for extreme-scale systems. One way to approach this challenge is the

“MPI everywhere” model. This approach applies distributed-memory programming

with MPI ranks uniformly across all processors on the system and does not distinguish

between intra-node and inter-node parallelism. MPI remains a popular choice among

many programmers writing distributed-memory applications. This model benefits

from simplicity, portability and backward compatibility but lacks key requirements for

scalability on extreme-scale systems. First, a MPI program designed for SPMD style

execution needs to statically decide on the parallelism which could be a scalability

bottleneck for applications that benefit from dynamic parallelism. Second, the MPI

model cannot leverage optimized algorithms and data structures designed specifically

for shared-memory programming. Third, the MPI specification needs to address many

scalability issues [79]. Growth of memory requirement of some functions linearly

with the number of ranks, a non-scalable graph topology, inadequate support for

fault tolerance and inefficient one-sided communication are some of the major issues.

Finally, although optimized intra-node communication may be available depending

on the implementation of MPI, it is not a guarantee. Hence communication latency

can become another bottleneck for this model.

State-of-the-art techniques that combine distributed- and shared-memory pro-

gramming models [80], as well as many PGAS approaches [6, 24, 47, 48], have demon-

36

strated the potential benefits of combining both levels of parallelism [81, 82, 39, 83],

including increased communication-computation overlap [84, 85], improved memory

utilization [86, 87], power optimization [88] and effective use of accelerators [89, 90,

91, 92]. The hybrid MPI and thread model, such as MPI and OpenMP, can take

advantage of those optimized shared-memory algorithms and data structures. On the

downside, such programs have to deal with either multithreaded contention on the

MPI subsystem or segmented MPI and OpenMP regions in the code which may suffer

from lack of asynchrony. Even the synchronization model can be difficult to orches-

trate due to a lack of unified synchronization primitives for threads and processes.

PGAS models on the other hand are simpler and provide a global shared-memory

view to the programmer. There are also many PGAS languages that include support

for multithreading. However, all these hybrid programming approaches often require

significant rewrites of application code and assume a high level of programmer exper-

tise.

The Integrated Native Communication Runtime (INCR) [93] is an effort to unify

UPC [6] and MPI [8] codes. This work extended and optimized the MVAPICH-

Aptus [94] MPI runtime on Infiniband to support the GASNet API [45]. INCR

included native support for active messages to avoid the limitations of mapping the

GASNet API to use a MPI stack. In this framework, UPC codes get compiled to

GASNet API’s as in normal UPC toolchains. From then, GASNet API’s use the

INCR interfaces. They have shown that this framework can deliver equal or better

performance than current GASNet performance on Infiniband, and at the same time

have the flexibility to allow MPI and UPC codes to run together in a program and use

the same communication layer. However, its scalability is yet unproven when MPI is

used in a multi-threaded mode and integrated with a dynamic threading model.

37

Our approach to address the programming challenge of extreme-scale systems

is based on dynamic task parallelism. Dynamic task parallelism has been widely

regarded as a programming model that combines the best of performance and pro-

grammability for shared-memory programs. These programming systems are typ-

ically assisted by efficient runtimes for task management on a limited number of

worker threads. Users can express fine-grained parallelism using lightweight tasks

and the runtime guarantees fully asynchronous execution without having to block

worker threads at any time. Task management responsibilities of the runtime involve

dynamic task creation, scheduling, synchronization and load balancing. Although

they are well suited for shared-memory systems, it is infeasible to replicate this run-

time model at the inter-node level. These runtimes typically depend on hardware

support for fast atomics (low-latency operations) to support load-balancing opera-

tions on shared-memory multicore systems. On distributed-memory systems, these

operations have to be performed by relatively high latency communication operations.

Clearly, this runtime model needs some adjustments with respect to communication

systems before we can scale dynamic task parallelism on distributed systems.

In this chapter, we present the HC-COMM framework [11], a scalable runtime

communication system that integrates Habanero-C with a communication system.

The HC-COMM runtime communication system addresses the challenges faced by a

dynamic task parallel runtime to scale on distributed-memory systems. The scope of

this work is to focus on how a dynamic task parallel runtime should interface with

a communication system. The focus is not to design the best communication system

today but to leverage one that is already available. This runtime can integrate any

popular communication system, such as MPI, which is the communication system of

choice used in this work. The HC-COMM runtime is designed using dedicated compu-

38

tation and communication cores to provide scalable and sustainable performance. The

goal of the HC-COMM system is to leverage benefits of asynchronous dynamic task

parallel programming models and the scalability of popular communication models.

We aim to hide communication latency with non-blocking execution and also avoid

contention on the communication sub-system as well.

We present HCMPI, a programming model that integrates asynchronous task par-

allelism with MPI. HCMPI offers a rich new platform with novel programming con-

structs, while also offering a practical approach for programmers wanting to take

incremental transitional steps starting from either a shared- or distributed-memory

program. In this model, a programmer can take an existing MPI application and

gradually add task parallelism to it. On the other hand, one can also take a shared-

memory program with dynamic task parallelism and create a distributed version of

the application by adding MPI calls. In either case, the HC-COMM runtime system

guarantees highly scalable non-blocking execution for computation worker threads.

All MPI calls are treated as asynchronous tasks in this model, thereby enabling unified

handling of messages and tasking constructs.

4.1 HCMPI Programming Model

HCMPI unifies the Habanero-C intra-node task parallelism with MPI inter-node par-

allelism. A HCMPI program follows the task parallel model within a node and MPI’s

SPMD model across nodes. The tasking model introduces communication tasks in ad-

dition to regular shared-memory computation tasks. Communication tasks deal with

MPI calls. Computation tasks have the ability to dynamically create asynchronous

communication tasks, and also wait for their completion. HCMPI seamlessly integrates

computation and communication task wait using Habanero-C’s finish and await con-

39

HCMPI BYTE HCMPI CHAR HCMPI SHORT

HCMPI INT HCMPI LONG HCMPI UCHAR

HCMPI USHORT HCMPI UINT HCMPI ULONG

HCMPI FLOAT HCMPI DOUBLE HCMPI LONG DOUBLE

Table 4.1 : HCMPI Types

structs. These constructs are also used to capture MPI’s blocking semantics. The

HC-COMM runtime guarantees non-blocking execution of the computation workers.

HCMPI will not introduce any deadlocks when extending from deadlock-free MPI

code.

The HCMPI types and APIs, shown in Table 4.1 and Table 4.2 are very similar

to MPI, making the initial effort of porting existing MPI applications to HCMPI ex-

tremely simple. Most MPI applications can be converted into valid HCMPI programs

simply by replacing APIs and types that start with MPI by HCMPI 1. The arguments

to these functions follow the structure of their MPI counterparts using appropriate

HCMPI types. Table 4.3 shows the runtime extensions specific to HCMPI. We use all

upper case to distinguish these functions from the regular MPI specific interface.

HCMPI treats all communication calls as asynchronous tasks, thereby enabling

unified handling of messages and tasking constructs. It supports blocking or waiting

for communication through HC’s task blocking feature. HCMPI is uniquely positioned

as a programming model that can help shared-memory task parallel applications tran-

sition to distributed-memory versions, while distributed-memory applications can in-

tegrate shared-memory task parallelism. The HC-COMM runtime ensures that com-

1While this replacement can be easily automated by a preprocessor or by API wrappers, we use

the HCMPI prefix in this work to avoid confusion with standard MPI.

40

Point-to-Point API

Blocking send:

HCMPI Send(void *b, int c, HCMPI Type t, int dest, int tag, HCMPI Comm cm)

Non-blocking send:

HCMPI Isend(void *b, int c, HCMPI Type t, int dest, int tag, HCMPI Comm cm, HCMPI Request **r)

Blocking recv:

HCMPI Recv(void *b, int c, HCMPI Type t, int dest, int tag, HCMPI Comm cm)

Non-blocking recv:

HCMPI Irecv(void *b, int c, HCMPI Type t, int dest, int tag, HCMPI Comm cm, HCMPI Request **r)

Test for completion:

HCMPI Test(HCMPI Request *request, int *flag, HCMPI Status **status)

Test all for completion:

HCMPI Testall(int count, HCMPI Request **requests, int *flag, HCMPI Status **statuses)

Test any for completion:

HCMPI Testany(int count, HCMPI Request **requests, int *index, int *flag, HCMPI Status **status)

Wait for completion:

HCMPI Wait(HCMPI Request *request, HCMPI Status **status)

Wait for all to complete:

HCMPI Waitall(int count, HCMPI Request **requests, HCMPI Status **statuses)

Wait for any to complete:

HCMPI Waitany(int count, HCMPI Request **requests, int *index, HCMPI Status **status)

Cancel outstanding communication:

HCMPI Cancel(HCMPI Request *request)

Get count of received data:

HCMPI Get count(HCMPI Status *status, HCMPI Type t, int *count)

Collectives API

Barrier synchronization:

HCMPI Barrier()

Broadcast:

HCMPI Bcast(void *b, int c, HCMPI Type t, int root, HCMPI Comm cm)

Scan:

HCMPI Scan(void *sb, void *rb, int c, HCMPI Type t, HCMPI Op op, HCMPI Comm cm)

Reduce:

HCMPI Reduce(void *sb, void *rb, int c, HCMPI Type t, HCMPI Op op, int root, HCMPI Comm cm)

Scatter:

HCMPI Scatter(void *sb, int sc, HCMPI Type st, void *rb, int rc, HCMPI Type rt, int root, HCMPI Comm cm)

Gather:

HCMPI Gather(void *sb, int sc, HCMPI Type st, void *rb, int rc, HCMPI Type rt, int root, HCMPI Comm cm)

Table 4.2 : HCMPI API for point-to-point and collective communication

41

Runtime API

Create request handle :

HCMPI REQUEST CREATE()

Status query:

HCMPI GET STATUS(HCMPI Request *request, HCMPI Status **status)

Table 4.3 : HCMPI Runtime API

putation and communication can seamlessly integrate onto one unified platform. The

HCMPI programming model integrates computation tasks with communication in two

ways, the structured communication task model and the message driven task model.

4.1.1 HCMPI Structured Communication Task Model

This model integrates MPI communication with the structured task model described

in section 3.2.1. We have seen earlier that a parent task can initiate an asynchronous

computation child task using the async construct. Similarly, computation tasks can

also initiate asynchronous non-blocking point-to-point communication via runtime

calls to HCMPI Isend and HCMPI Irecv. These calls are converted to asynchronous

communication tasks by the runtime. Control returns immediately to the parent

task which can proceed to execute the next statement. The only difference between

the computation tasks and communication tasks is that the communication task’s

functionality is driven by a specific API as shown in Table 4.2, unlike a computation

task which can accept any user statement code. The structured task model uses

the finish construct as a synchronization point for all asynchronous tasks that were

created transitively within its scope. The same model applies in HCMPI to both

computation and communication tasks. Using the finish construct one can not only

wait for computation tasks to complete but will also block for all communication

42

tasks that were issued within its scope. In other words, all communication tasks will

have the same immediately enclosing finish scope as the parent computation task.

Figure 4.1 shows that the execution of foo is asynchronous to the send and receive

communication calls, while the finish ensures that the communication is complete

when baz runs.

finish {

async foo();

HCMPI Isend(send buf, · · ·);

HCMPI Irecv(recv buf, · · ·);

· · · //do asynchronous work

}

baz(); // Isend and Irecv are complete after finish scope

Figure 4.1 : HCMPI Structured Communication Tasks: Starting asynchronous com-

munication and waiting for for its completion.

4.1.2 HCMPI Message Driven Task Model

This model integrates MPI communication with the HC data-driven producer-consumer

task model shown in section 3.2.2. A data-driven consumer task uses the await con-

struct to wait for the satisfaction of dependences by the producer before it can execute.

In this model, the producer may be a communication message, such that the consumer

will not execute until that message has completed. The data-driven task model uses

DDF objects for both synchronizing as well as passing data between the producer and

consumer. The HCMPI model uses a similar object called a request handle. Table 4.2

43

HCMPI Request * r;

HCMPI Irecv(recv buf, · · · , &r);

async AWAIT(r) IN(recv buf, r) {

HCMPI Status * s;

HCMPI GET STATUS(r, &s);

· · · //read status and recv buf

}

· · · //do asynchronous work

Figure 4.2 : HCMPI Await Model

shows that HCMPI Isend and HCMPI Irecv calls return a request handle object called

HCMPI Request, similar to MPI Request. This request handle can be used exactly the

same way as a DDF object inside the await clause of the consumer task. As with the

DDF model, the HCMPI request object is used to pass data from the communication

to the consumer task. Specifically, a request handle can be queried by the consumer

task for the status of the communication using HCMPI GET STATUS call as shown in

Table 4.3. The status object is implicitly allocated by the runtime and its type is

HCMPI Status, similar to MPI Status. Figure 4.2 shows the message driven compu-

tation model where the asynchronous computation task get created but does not get

scheduled for execution until the receive communication completes. In this model,

waiting for completion becomes fully asynchronous with the rest of the tasks.

4.1.3 HCMPI Implementation for MPI Blocking Semantics

In the HCMPI programming model, MPI calls are implemented on a task parallel

runtime using HC task parallel constructs. This enables a HCMPI to operate on

44

a fully asynchronous runtime with unified computation and communication tasks.

All blocking communication is handled by the finish construct. For example, fig-

ure 4.3 shows how a blocking receive operation is implemented in HCMPI. As can

be noted, the actual communication call still remains an asynchronous call (HCMPI

Irecv). However, the blocking semantics is ensured by the finish that is wrapped

around the asynchronous communication call. The HC-COMM runtime ensures that

a blocking call using the finish construct will only block the current task but will not

block the worker thread.

finish {

HCMPI Irecv(recv buf, · · ·);

} // Irecv must be completed after finish

· · ·

Figure 4.3 : Using the finish construct in HCMPI. A finish around HCMPI Irecv, a

non-blocking call, implements HCMPI Recv, a blocking call.

Another way to wait for the completion of a communication task is through HCMPI

Wait and its variants HCMPI Waitall and HCMPI Waitany. In the MPI model, if a

MPI Wait call blocks, then the whole worker thread block unlike in this model. In the

HCMPI model, HCMPI Wait is implemented simply as finish async await(req), where

req is the request handle as shown in Table 4.2. The computation task logically

blocks at the HCMPI Wait for the asynchronous communication task to complete. The

synchronization event is provided by a HCMPI Request handle and returns a HCMPI

Status object. Figure 4.4 shows an example of using HCMPI Status to get the count

of the elements received in a buffer after the completion of a HCMPI Irecv operation.

45

HCMPI Request * r;

HCMPI Irecv(recv buf, · · · , &r);

· · · //do asynchronous work

HCMPI Status * s;

HCMPI Wait(r, &s);

int count;

HCMPI Get count(s, HCMPI INT, &count);

if (count > 0) { //read recv buf }

Figure 4.4 : HCMPI Wait and Status Model

4.1.4 HCMPI Collective Synchronization Model

Inter-node-only collective operations in HCMPI are similar to MPI collectives. Ta-

ble 4.2 includes a partial list of supported HCMPI collectives. All HCMPI collec-

tive operations follow the blocking semantics discussed earlier. When the blocking

HCMPI Barrier call is executed, the computation task blocks but the computation

worker thread does not. We will add support for non-blocking collectives to HCMPI

once they become part of the MPI standard. Figure 4.5 shows how to perform an

inter-node-only barrier. In this example, asynchronous task A() is created before the

barrier and can logically run in parallel with the barrier operation. However, function

call B() must be completed before the barrier, and function call C() can only start

after the barrier.

46

async A();

B();

HCMPI Barrier();

C();

Figure 4.5 : HCMPI Barrier Model

4.2 HC-COMM Runtime Implementation

The HC-COMM runtime is a novel design based on dedicated computation and com-

munication workers in a work-stealing scheduler, shown in Fig. 4.6. The HC-COMM

runtime has to create one communication worker per MPI-rank. The number of

computation workers can be set at runtime by the -nproc command line option. Ex-

perimental results reported in this work were obtained by designating one core in a

node to be the communication worker, and using the remaining cores in the node as

computation workers. Support for multiple communication workers per node is pos-

sible through more MPI ranks on the node. Our experiments show that the benefits

of a dedicated communication worker can outweigh the loss of parallelism from the

inability to use it for computation. We believe that this trade-off will be even more

important in future extreme scale systems, with large numbers of cores per node, and

an even greater emphasis on the need for asynchrony between communication and

computation.

The HC-COMM runtime is an extension of the Habanero-C work-stealing run-

time. Computation workers are implemented as pthreads (typically one per hardware

core/thread). Each worker maintains a double-ended queue (deque) of lightweight

computation tasks. A worker enqueues and dequeues tasks from the tail end of its

47

Communica)on*Worker*

Node* Node* Node*

MPI* MPI* MPI*

Computa)on*
Worker*

Computa)on*
Worker*

Computa)on*
Worker*

Steal*
Con)nua)ons*

Communica)on*Task*
• *Status*
• *Type*
• *Con)nua)on*
• *etc*

Insert*new*
Communica)on*
Task* Push****Con)nua)ons*

Work=Stealing*

Inter=Node*

Intra=Node*

Figure 4.6 : The HC-COMM Intra-node Runtime System

deque. Idle workers steal tasks from the head end of the deques of other workers. A

communication optimization scheme, such as the one implemented in [95], will be a

natural extension to our implementation of HC-COMM workers.

The HC-COMM communication worker is dedicated to execute MPI calls, using

a worklist of communication tasks implemented as a lock-free queue. Figure 4.7

shows the lifecycle of a communication task. When a computation worker makes

an HCMPI call, it creates a communication task in the ALLOCATED state. The task is

either recycled from the set of AVAILABLE tasks, or it is newly allocated and enqueued

into the worklist. The task structure is initialized with required information, such

48

ALLOCATED PRESCRIBED ACTIVE COMPLETED AVAILABLE

Figure 4.7 : Lifecycle of a Communication Task

as buffer, type, etc. and then set as PRESCRIBED. When the communication worker

finds a PRESCRIBED task, it either issues an asynchronous MPI call for point-to-point

communication or blocks for a collective MPI call. For asynchronous calls, the worker

sets the task state as ACTIVE and moves on to the next task in the worklist. The

worker tests ACTIVE tasks for completion using MPI Test. Once an MPI operation has

completed, the task state is set to COMPLETED. If the task is the last one to complete

in the enclosing finish scope, the communication worker pushes the continuation

of the finish onto its deque to be stolen by computation workers. The HC-COMM

compiler parses async and finish statements, recognize the HCMPI calls in the code,

and replace them with appropriate library and runtime calls to create task data

structures, enable task creation and execution, and to ensure proper task termination

within each finish scope. We have implemented our compiler on top of the ROSE

source-to-source compiler framework [96].

HC-COMM implements event-driven task execution using Habanero-C’s Data-

Driven Tasks (DDTs) and Data-Driven Futures (DDFs), introduced in Section 3.2.2.

DDFs allow the programmer to specify task dependences in the await clause of a

DDT. When a DDT’s task dependences are satisfied, it is scheduled by the runtime

for execution. Currently, there is no support for a priority scheduling. A DDT can

await on one or more DDFs, while a DDF can have one or more DDTs awaiting its

satisfaction. DDFs follow put-get semantics. An await on a DDF by a consumer

DDT is to wait for the put on that DDF by a producer DDT. A DDF is a single-

49

TaskA Wrapper

TaskB
ddl_and = DDF_LIST_CREATE_AND();

DDF_LIST_ADD(DDFX, ddl_and);

DDF_LIST_ADD(DDFY, ddl_and);

async await (ddl_and){...}

TaskA
ddl_or = DDF_LIST_CREATE_OR();

DDF_LIST_ADD(DDFX, ddl_or);

DDF_LIST_ADD(DDFY, ddl_or);

async await (ddl_or){...}

DDFYDDFX

0 /1

Figure 4.8 : HC-COMM DDF Runtime

assignment object, meaning there can be only one producer for that DDF. A HCMPI

Request handle is implemented as a DDF. Computational tasks created using async

await(req), where req is the HCMPI Request handle, will start executing once the

communication task represented by the handle has been completed. We have seen

that HCMPI Wait is implemented as finish async await(req); an elegant solution

using Habanero-C constructs. HCMPI Waitall and HCMPI Waitany are implemented

as extensions to HCMPI Wait where a task waits on a list of DDFs, as shown in Fig. 4.8.

The key difference is that the waitall list is an AND expression while the waitany

list is an OR expression. A novel contribution of this work is the extension of the

implementation of DDF lists to support the OR semantics, in addition to the AND

semantics that were proposed in [77]. The DDF AND and OR lists are created by apis

DDF LIST CREATE AND() and DDF LIST CREATE OR() respectively. A DDF is added

to the list by the DDF LIST ADD(ddf, ddf list) api. The handling of an AND list is

similar to the one described in [77]. In case of the OR list, the runtime iterates over

the list of DDFs found in the await clause. If a DDF is found to have been satisfied

by a put, the task becomes ready for execution immediately. If no satisfied DDF is

50

found, the task gets registered onto all DDF’s on the list. When a put finally arrives

on any of the DDF’s the task get released and is pushed into the current worker’s

deque. To prevent concurrent puts from releasing the same task with an OR DDF

list, each task contains a wrapper with a token bit to indicate if the task has already

been released for execution, as shown in Fig. 4.8. This token is checked and set atom-

ically to ensure the task is released only once. After a DDT starts executing following

a put on a DDF in a OR list, the programmer has the option to find out which DDF

in the list satisfied the dependence through a runtime API called DDF LIST INDEX.

Given a DDF OR list, DDF LIST INDEX will return a integer index of the DDF on the

list (a runtime error is thrown for AND lists). It is the user’s responsibility to pass

an array of DDFs into the task to retrieve the DDF object corresponding to the index.

The HC-COMM communication runtime is itself a client of the DDF runtime. It uses

DDFs to communicate MPI Status information to the computation tasks via a DDF

PUT of the HCMPI Status object on to the HCMPI Request DDF. HCMPI GET STATUS

internally implements a DDF GET.

Charm++ AMPI [97] is an implementation of MPI that supports dynamic load

balancing and multithreading for MPI applications. It enables adaptive overlap of

communication and computation through the virtualization of processors, automatic

load balancing and easy portability from MPI. These features are similar to HCMPI

with a few key differences. While the AMPI runtime uses the Charm++ communica-

tion runtime, HCMPI is built on existing MPI runtimes. The AMPI runtime achieves

loadbalancing through predictive models based on runtime workload information,

whereas HCMPI relies on workstealing. Our choice of dedicating a core for commu-

nication is based on supporting fine-grained task parallelism at intra-node level and

avoiding scalability issues of multithreaded MPI.

51

4.3 Results

In this section we present results measuring HCMPI performance on some standard

benchmark programs. From our experiments, we aim to explain the performance

ramifications of our design choices in the HCMPI programming model and the HC-

COMM runtime. We test the HCMPI implementation for micro-benchmark perfor-

mance and strong scalability. For micro-benchmark performance, we use a test suite

of multi-threaded MPI programs. We conduct our strong scaling experiment on UTS,

a standard benchmark application that does tree-based search. We compare our per-

formance against existing reference codes.

Our experimental framework used the Jaguar supercomputer at Oak Ridge Na-

tional Labs and the DAVinCI cluster at Rice University. The Jaguar supercomputer

was a Cray XK6 system with 18,688 nodes with Gemini interconnect. Each node

was equipped with a single 16-core AMD Opteron 6200 series processor and 32 GB

of memory. For our experiments, we scaled up to 1024 nodes (16384 cores) and used

the default MPICH2 installation. The DAVinCI system is an IBM iDataPlex con-

sisting of 2304 processor cores in 192 Westmere nodes (12 processor cores per node)

at 2.83 GHz with 48 GB of RAM per node. All nodes are connected via QDR Infini-

Band (40 Gb/s). Our experiments on DAVinCI used up to 96 nodes (1152 cores) and

MVAPICH2 1.8.1.

4.3.1 Micro-benchmark Experiments

HCMPI proposes an integrated shared- and distributed-memory parallel program-

ming model. Many current hybrid models use MPI with Pthreads or OpenMP to

expose a combination of threads and processes to the user. Such a model would have

to deal with concurrent MPI calls from multiple threads. This implies that MPI has

52

to operate either on one of it’s multi-threaded modes, or there has to be additional

synchronization effort from the programmer. As a result our comparison baseline

would be against hybrid models using MPI in a multi-threaded mode of operation.

For our first set of micro-benchmark experiments, we used the test suite [98] devel-

oped at ANL to evaluate multi-threaded MPI. The shared-memory multithreading is

achieved using pthreads. A bandwidth test is performed by measuring delays caused

by sending large (8Mbyte) messages with low frequency. A message rate test trans-

mits empty messages with high frequency. In the latency test 1000 sends and 1000

receives are performed for different message sizes ranging from 0 to 1024. The average

time delay for each size is reported. The reference benchmark programs initialize MPI

using MPI THREAD MULTIPLE and issue MPI calls from multiple threads. The HCMPI

equivalent is to create as many computation workers as there are pthreads in the

MPI version. HCMPI also adds a dedicated communication worker thread to the

process. The motivation of this benchmark is to evaluate the feasibility of using MPI

in multithreaded mode compared to HCMPI (which has to deal with the overhead of

a dedicated communication worker). Parallel tasks on multiple computation workers

can communicate concurrently through the communication worker. HCMPI inher-

ently uses MPI THREAD SINGLE due to the dedicated communication worker. This

avoids using multi-threaded MPI, which typically (on most MPI runtimes currently

available) performs worse than single-threaded MPI due to added synchronization

costs. This rationale currently precludes HCMPI from using multiple communication

workers per process.

These micro-benchmark tests always use two processes communicating with each

other. In our experiments, they are placed on two different nodes. The results in

Fig. 4.9 are for MVAPICH2 with Infiniband on DAVinCI, and the results in Fig. 4.10

53

23.7	 23.2	 23.7	 24.1	 23.9	 23.4	 23.9	 24.1	

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

30.0	

1	 2	 4	 8	

G
bi
ts
/s
	

Threads	

Bandwidth	 Mvapich2	 Infiniband	 (N=2)	 MPI	
HCMPI	

(a) Bandwidth

1.765	

1.081	

0.450	

0.200	
0.345	

0.629	 0.677	
0.445	

0.0	

0.4	

0.8	

1.2	

1.6	

2.0	

1	 2	 4	 8	

M
ill
io
n	
M
sg
/s
	

Threads	

Message	 Rate	 Mvapich2	 Infiniband	 (N=2)	 MPI	
HCMPI	

(b) Message Rate

0	

20	

40	

60	

0	 64	 128	 192	 256	 512	 768	 1024	

Ti
m
e	
(u
s)
	

Size	 (bytes)	

Latency	 Mvapich2	 Infiniband	 (N=2)	

MPI	 (T=1)	 MPI	 (T=2)	 MPI	 (T=4)	 MPI	 (T=8)	
HCMPI	 (T=1)	 HCMPI	 (T=2)	 HCMPI	 (T=4)	 HCMPI	 (T=8)	

(c) Latency

Figure 4.9 : Thread Micro-benchmarks for MVAPICH2 on Rice DAVinCI cluster with

Infiniband interconnect

54

33.7	

42.7	 42.0	
45.3	

30.5	

42.8	 42.2	 44.4	

0	

10	

20	

30	

40	

50	

1	 2	 4	 8	

G
bi
ts
/s
	

Threads	

Bandwidth	 MPICH2	 Gemini	 (N=2)	 MPI	
HCMPI	

(a) Bandwidth

0.43	

0.02	

0.22	 0.21	

0.28	

0.42	 0.42	

0.35	

0.00	

0.10	

0.20	

0.30	

0.40	

0.50	

1	 2	 4	 8	

M
ill
io
n	
M
es
sa
ge
s/
s	

Threads	

Message	 Rate	 MPICH2	 Gemini	 (N=2)	 MPI	
HCMPI	

(b) Message Rate

1	

10	

100	

1000	

0	 64	 128	 192	 256	 512	 768	 1024	

Ti
m
e(
us
)	

Size(bytes)	

Latency	 MPICH2	 Gemini	 (N=2)	

MPI	 (T=1)	 HCMPI	 (T=1)	 MPI	 (T=2)	 HCMPI	 (T=2)	
MPI	 (T=4)	 HCMPI	 (T=4)	 MPI	 (T=8)	 HCMPI	 (T=8)	

(c) Latency

Figure 4.10 : Thread Micro-benchmarks for MPICH2 on Jaguar Cray XK6 with

Gemini interconnect

55

are for MPICH2 with Gemini on Jaguar. The bandwidth experiments in both cases

show MPI and HCMPI performing close to each other. This is because the bandwidth

test communicates a high volume of data per message which easily overwhelms the

network. Adding more threads does little to ease the situation. The message rate

tests sends a large number of low data volume messages. In this case, HCMPI starts

performing better than multi-threaded MPI when we scale up the number of threads

inside the process. We conclude that it reflects higher synchronization overheads

for using the MPI subsystem concurrently from different threads. The latency tests

confirm our conclusion by showing HCMPI latencies scale more gracefully than MPI

when increasing the number of threads. For extreme-scale systems with O(103) cores

per node, there is a possibility of requiring more than one dedicated communication

thread to avoid overloading. HCMPI can handle this scenario by employing more than

one HCMPI process on a node (instead of the one process used in our experiments),

which will created the desired number of communication threads (one per process).

The Jaguar message rate test shows a dip in performance when using two threads.

This phenomenon was consistently repeatable over multiple runs of the benchmark.

This fact is also reflected on the latency chart where we see that latency in MPI with

two threads is an order magnitude higher than MPI with eight threads.

4.3.2 UTS Case Study:

For our scaling experiment we chose the Unbalanced Tree Search (UTS) applica-

tion [99, 100]. The benchmark contains a reference implementation using MPI in

the publicly available version [101]. The UTS tree search algorithm is parallelized by

computing the search frontier tree nodes in parallel. The search typically leads to

unbalanced amount of work on parallel resources, which can then benefit from load

56

balancing techniques. The reference MPI implementation of the benchmark, used as

the baseline for creating the HCMPI version, performed parallel search using multiple

MPI processes, and load balancing using inter-process work-sharing or work-stealing

algorithms. In our experiments we have focused on the work-stealing version due to

better scalability [100]. We scale our experiment up to 16,384 cores on the Jaguar

supercomputer.

The HCMPI implementation of UTS adds intra-process parallelization to the ref-

erence MPI implementation. It does not modify the inter-process peer-to-peer work-

stealing load balancing algorithm. HCMPI’s goal is to benefit from shared-memory

task parallelism on a compute node and uses only one process per node. In this

context, compute node and compute process can be used interchangeably. In the

HCMPI implementation a task has access to a small stack of unexplored tree nodes

local to the worker thread it is executing on. When the stack fills up, tree nodes

from the stack are offloaded to a deque for intra-process work-stealing. This strategy

generates work for intra-process peers before it sends work to global peers. The use of

non-synchronized thread-local stacks is for superior performance over deques. Global

communication is handled by the communication worker. The HCMPI runtime uses

a listener task for external steal requests while the computation workers are busy.

When another process requests a steal, the listener task looks for internal work, try-

ing to steal from the local work-stealing deques. If the local steal was successful,

it responds with that work item, if not, with an empty message. Inside a compute

node, when a computation worker runs out of work and is unable to steal work from

local workers, it requests the communication worker to start a global steal. A global

steal uses the reference MPI inter-process steal algorithm. During a global steal, if

an active local computation worker has been able to create internal work, then some

57

T1XXL T3XXL

chunk size polling chunk size polling

MPI 8 4 15 8

HCMPI 8 4 4 16

Table 4.4 : Best UTS configurations on Jaguar for 64 compute nodes

idle computation workers may get back to work. Once the communication worker

receives a globally stolen work item, it pushes that item onto its own deque to be

stolen by idle computation workers. Finally, the communication worker participates

in a token passing based termination algorithm, also used in the reference MPI code.

In our experiments, we use two UTS tree configurations, T1XXL and T3XXL.

T1XXL uses a geometric distribution and generates about 4 billion tree nodes. T3XXL

uses a binomial distribution and generates about 3 billion tree nodes. We varied the

number of compute nodes from 4 to 1024 and cores per node from 1 to 16 in our

experiments. To identify the best performing UTS configurations on Jaguar, we ex-

plored various chunk sizes, −c, and polling intervals, −i, on 64 compute nodes with

16 cores on both MPI and HCMPI for T1XXL as well as T3XXL. The chunk size

parameter refers to the number of nodes that are offloaded to a thief during work-

stealing. The polling interval parameter refers to the number of tree nodes that a

worker explores before releasing a chunk of nodes from the stack to the work-stealing

deque, provided the stack contains sufficient number of tree nodes. Adjusting the

chunk size and polling interval are important as they help in mitigating the over-

heads of steals and stack-to-deque release operations while maintaining a balanced

load across workers. Table 4.4 provides the best chunk size and polling intervals we

58

found. The best configuration of MPI for T1XXL was −c = 4,−i = 16, while for

T3XXL was −c = 15,−i = 8. These configurations performed better on Jaguar than

the published configurations in [100]. The best HCMPI configuration for T1XXL

was −c = 8,−i = 4, while for T3XXL was again −c = 8,−i = 4. Finding the best

UTS chunk size and polling intervals for each node and cores per node combination

is outside the scope of this work. Only fixed size chunks and fixed polling intervals

considered. Using adaptive algorithms can be considered in future work. Hence we

use the values presented in Table 4.4 for all possible node-core combinations. In our

experiments, we allocate the same number of resources for both MPI and HCMPI.

This means HCMPI runs one fewer computation worker per node than MPI because

it dedicates one thread as communication worker. E.g. When using 4 nodes with 16

cores per node, MPI runs 4 × 16 = 64 processes, whereas HCMPI runs 4 × 15 = 60

computation workers and 4 communication workers, one per node. The MPI im-

plementation uses MPI THREAD SINGLE. Our results show that despite this disparity,

HCMPI performs exceedingly well compared to MPI. This underlines our premise

that dedicating cores for communication by using one or more MPI processes per

node will be inexpensive for compute nodes with hundred of cores in the near future.

Figures 4.11a and 4.11b show the running times of MPI for T1XXL and T3XXL

workloads respectively. Similarly, Fig. 4.12a and 4.12b show the running times of

HCMPI for T1XXL and T3XXL workloads. Individual lines show the performance

for different number of cores per node. For MPI, each extra core amounts to an extra

MPI process per node, where as for HCMPI it amounts to an extra thread in the

process on that node. For T1XXL, MPI stops scaling after approximately 4096 cores,

and then starts degrading rapidly. In contrast, HCMPI scales perfectly to about 8192

cores without further degradation. Results for T3XXL also show similar trends.

59

1"

10"

100"

1000"

4" 8" 16" 32" 64" 128" 256" 512" 1024"

lo
g$
%
m
e$
(s
ec
)$

nodes$

2"cores/node" 4"cores/node"

"8"cores/node" 16"cores/node"

(a) T1XXL

1"

10"

100"

1000"

4" 8" 16" 32" 64" 128" 256" 512" 1024"

lo
g$
%
m
e$
(s
ec
)$

nodes$

2"cores/node" 4"cores/node"

"8"cores/node" 16"cores/node"

(b) T3XXL

Figure 4.11 : Scaling of UTS on MPI.

60

0.1$

1$

10$

100$

1000$

4$ 8$ 16$ 32$ 64$ 128$ 256$ 512$ 1024$

lo
g$
%
m
e$
(s
ec
)$

nodes$

2$cores/node$ 4$cores/node$
8cores/node$ 16$cores/node$

(a) T1XXL

0.1$

1$

10$

100$

1000$

4$ 8$ 16$ 32$ 64$ 128$ 256$ 512$ 1024$

lo
g$
%
m
e$
(s
ec
)$

nodes$

2$cores/node$ 4$cores/node$
8cores/node$ 16$cores/node$

(b) T3XXL

Figure 4.12 : Scaling of UTS on HCMPI.

61

4	 8	 16	 32	 64	 128	 256	 512	 1024	

2	 	 cores/node	 0.67	 0.67	 0.67	 0.67	 0.67	 0.68	 0.68	 0.69	 0.73	
4	 cores/node	 1.00	 1.00	 1.00	 1.00	 1.00	 1.01	 1.03	 1.10	 1.33	
8	 cores/node	 1.17	 1.17	 1.17	 1.17	 1.17	 1.20	 1.29	 1.66	 4.50	
16	 cores/node	 1.26	 1.26	 1.26	 1.26	 1.33	 1.51	 1.98	 5.76	 22.31	

22.31	

0.40	

4.00	

40.00	

Sp
ee
du

p	
	

(M
PI
	 T
im

e	
/	
H
CM

PI
	 T
im

e)
	

Nodes	

2	 	 cores/node	 4	 cores/node	

8	 cores/node	 16	 cores/node	

(a) T1XXL

4	 8	 16	 32	 64	 128	 256	 512	 1024	

2	 	 cores/node	 0.67	 0.67	 0.67	 0.67	 0.67	 0.68	 0.72	 0.88	 1.28	
4	 cores/node	 0.99	 0.99	 0.99	 1.00	 1.02	 1.09	 1.33	 1.92	 2.75	
8	 cores/node	 1.17	 1.17	 1.17	 1.19	 1.27	 1.51	 2.33	 3.59	 5.67	
16	 cores/node	 1.26	 1.27	 1.29	 1.41	 1.87	 3.23	 5.59	 8.96	 18.47	

18.47	

0.40	

4.00	

40.00	

Sp
ee
du

p	
	

(M
PI
	 T
im

e	
/	
H
CM

PI
	 T
im

e)
	

Nodes	

2	 	 cores/node	 4	 cores/node	

8	 cores/node	 16	 cores/node	

(b) T3XXL

Figure 4.13 : HCMPI speedup compared to MPI

62

Figures 4.13a and 4.13b compare performance of HCMPI with MPI on T1XXL

and T3XXL respectively. The peak performance improvement is about 96% for 1024

nodes with 16 cores per node. In regions where MPI scales very strongly, HCMPI

achieves almost 50% improvement. A distinct crossover point in performance can be

noticed in favor of HCMPI when the number of cores per node scales up. At 2 or 4

cores per node, HCMPI suffers from lack of parallel workers compared to MPI. But,

as we scale up to 8 and 16 cores on the node, HCMPI outperforms MPI.

Figure 4.14 : HCMPI speedup compared to MPI on UTS T3XXL with extra com-

munication worker

We also compared MPI with HCMPI by allocating HCMPI one more core than

MPI to compensate for the communication worker which does no actual computation.

In such configuration, shown for T1XXL in Fig. 4.14, the HCMPI performance is

always better than MPIs performance, with a minimum speedup of 19% for 16 nodes

in 1 core per node case.

63

1024 Nodes MPI HCMPI

Cores Time(s) Work(s) Overhead(s) Search(s) Fails Time(s) Work(s) Overhead(s) Search(s) Fails

2 1.696 1.416 0.047 0.225 2703979 2.663 2.377 0.014 0.260 9861326

4 1.245 0.702 0.026 0.440 7869775 0.963 0.786 0.005 0.162 6279535

8 2.376 0.392 0.019 1.715 47102587 0.728 0.368 0.003 0.331 9212784

16 10.770 0.195 0.011 9.295 94754150 0.443 0.171 0.002 0.261 8835986

256 Nodes MPI HCMPI

Cores Time(s) Work(s) Overhead(s) Search(s) Fails Time(s) Work(s) Overhead(s) Search(s) Fails

2 5.941 5.698 0.169 0.073 601384 9.641 9.511 0.053 0.076 584293

4 3.052 2.818 0.090 0.142 1603756 3.240 3.148 0.021 0.071 640242

8 1.829 1.532 0.054 0.233 2027647 1.561 1.479 0.011 0.069 562496

16 1.457 0.775 0.034 0.510 2353054 0.793 0.691 0.005 0.095 824427

64 Nodes MPI HCMPI

Cores Time(s) Work(s) Overhead(s) Search(s) Fails Time(s) Work(s) Overhead(s) Search(s) Fails

2 23.231 22.534 0.643 0.054 33814 38.216 37.947 0.215 0.054 54509

4 11.708 11.323 0.339 0.046 127823 12.736 12.608 0.078 0.049 74264

8 6.518 6.237 0.207 0.073 456853 6.017 5.919 0.041 0.057 104471

16 3.431 3.075 0.127 0.189 203836 2.842 2.765 0.019 0.057 80501

Table 4.5 : UTS overhead analysis for T1XXL runs on Jaguar

64

To analyze this result further, we profiled both MPI and HCMPI codes using the

built-in performance counters in the UTS application. First, the overall execution

time is split into the following components: work, overhead, search and idle. Work

represents the actual time spent on computation, that is, exploring nodes in the search

tree. Overhead represents the time spent on making progress for others with global

communication. MPI computation workers interrupt work every polling interval for

this. In HCMPI, the communication worker handles all external requests for work,

which implies that the computation workers are never interrupted. The overhead

component for computation workers comes from releasing chunks of work from the

local stack to the work-stealing deques. Search represents the time spent trying to

globally locate work. MPI workers enter this mode once they completely run out

of work. When an HCMPI worker runs out of local work and cannot steal work

from the other intra-process workers as well, it starts the search phase by requesting

the communication worker to globally locate work. There can be only one active

search phase per process. Searching for intra-process work is not counted. When a

search phase is active, the idle worker keeps looking for intra-process work and may

start computation if it can find work. Idle time is the time spent in startup and

termination. This is irrelevant for our comparison as we use the same startup and

termination algorithms in both MPI and HCMPI. Next, we also profiled the total

number of failed steal requests during program execution. These numbers do not

include intra-process failed steals in HCMPI. Inter-process failed steals represents the

total amount of redundant communication in the system.

Table 4.5 provides statistical data for three node configurations: 64, 256 and

1024. We chose these three nodes as being representative of three regions of MPI’s

scaling results: strongly scaling, partly scaling, reverse scaling. We show these results

65

for only T1XXL for brevity. We have verified that results on T3XXL have similar

characteristics. As before, we provide exactly the same number of resources for MPI

and HCMPI for fair comparison.

It is evident that for both MPI and HCMPI, work overshadows the overhead time,

although HCMPI consistently shows 5× smaller overhead. This is because the com-

putation worker only ever interrupts itself to inject more work into the work-stealing

deque. It never has to deal with responding to communication, something which is

handled by the communication worker. For lower number of cores per node (e.g., 2

cores per node), the work component is higher for HCMPI compared to MPI which

directly influences the overall running time, since HCMPI has few workers compared

to MPI. For low core counts, this leads to up to 50% more work per computation

worker thread. Most importantly, it is evident that for higher cores per node, the

search component becomes the biggest bottleneck for MPI performance. For exam-

ple, on 1024 nodes, when going from 8 cores to 16 cores, MPI spends 5.4× more

time in the search. In comparison, HCMPI’s search component remains fairly stable.

Consequently, HCMPI’s improvement over MPI when scaling from 8 cores to 16 cores

in that configuration is 22.3/4.5 ≈ 5×. Similarly, when going from 4 to 8 cores, MPI

spends 3.9× more time in search, which is reflected in HCMPI’s 4.5/1.33 ≈ 3.4×

speedup during the same scaling when compared to MPI.

To understand why MPI spends more time in the search phase, we profiled the

number of failed steal requests (see Fails column in Table 4.5). We observed that

MPI has 10.7× and 5.1× more failed steal requests for 1024 nodes with 16 and 8

cores per node cases respectively, which can be accounted for the bulk of extra search

time presented before. MPI steal requests are two-sided. The thief has to send a steal

request to the victim and wait for a response. Failed two-sided steals imply redundant

66

communication, an inherent drawback of the MPI work-stealing model. On the other

hand, majority of HCMPI steals are intra-node shared-memory steals where a worker

thread can directly steal from another worker’s deque without disturbing the victim.

From these results, we conclude that HCMPI’s faster stealing policy coupled with a

highly responsive communication worker per node results in better computation and

communication overlap and scalable performance.

4	 8	 16	 32	 64	 128	 256	 512	 1024	

2	 	 cores/node	 0.60	 0.63	 0.79	 0.71	 0.62	 0.79	 0.91	 0.81	 0.73	
4	 cores/node	 0.79	 0.79	 1.33	 1.12	 1.12	 1.39	 1.30	 1.76	 1.30	
8	 cores/node	 1.18	 0.93	 1.77	 1.36	 1.41	 2.04	 3.34	 2.53	 4.94	
16	 cores/node	 1.00	 1.00	 1.53	 1.52	 3.15	 4.29	 2.43	 5.49	 21.15	

21.15	

0.40	

4.00	

40.00	

Sp
ee
du

p	
	

(M
PI
+O

M
P	
Ti
m
e	
/	
H
CM

PI
	 T
im

e)
	

Nodes	

2	 	 cores/node	 4	 cores/node	

8	 cores/node	 16	 cores/node	

Figure 4.15 : HCMPI Speedup compared to MPI+OpenMP on UTS T1XXL

Comparison with MPI + OpenMP:

Although there is no publicly available reference implementation of UTS using MPI

and OpenMP in a hybrid model, we have created one ourselves by integrating the

reference MPI and OpenMP codes. Similar to HCMPI, the OpenMP threads par-

ticipate in intra-process work-stealing. The key difference is that the hybrid model

67

does not dedicate a thread to be a communication worker. In the initial implemen-

tation plan, the MPI process first ensures locally available work before starting an

OpenMP parallel region to execute that work. After the threads complete execution

locally, the parallel region ends and the program goes back to MPI mode to search for

more global work. This naive staged approach however suffered terribly from thread

idleness problems resulting in worse performance than MPI. As an improvement we

increased the computation and communication overlap. In the OpenMP parallel re-

gion when threads run out of work and cannot find anything to steal, they wait at

a cancelable barrier. In case more local work becomes available, the barrier gets

canceled and waiting threads re-enter the execution region. In our hybrid implemen-

tation, when a thread gets to the cancelable barrier, it requests for global work. So, a

global steal request goes out even when some threads are busy computing. If global

work arrives when the parallel region is active, the work gets folded into local work

by the thread that receives it. This approach drastically improved performance over

the naive implementation. This hybrid model has to deal with two issues. First, an

OpenMP thread has to interrupt its work every polling interval to service external

steal requests if no other thread is already acting as the communication worker. Sec-

ond, MPI has to be used in one of the multithreaded modes, such as MPI THREAD

SERIALIZED or MPI THREAD MULTIPLE. We compare its performance against

HCMPI on T1XXL in Fig. 4.15. In this experiment the hybrid code used one MPI

process on every node. The number of OpenMP threads were the same as the total

number of worker threads (computation + communication) used by HCMPI, for a fair

comparison. The results show similar speedups for HCMPI over the hybrid version.

68

4.4 Summary

In this chapter we presented the HC-COMM runtime and the HCMPI programming

model targeted towards a software solution for extreme-scale systems. We demon-

strated scalable performance with the help of a novel runtime design that dedicates

one core for communication and the others for computation in every compute node.

We evaluated our approach on a set of micro-benchmarks as well as larger applica-

tions and demonstrate better scalability compared to the most efficient MPI imple-

mentations. We presented a unified programming model to integrate asynchronous

task parallelism with distributed-memory parallelism. For the UTS benchmark on

the ORNL Jaguar machine with 1024 nodes and 16 cores/node, HCMPI performed

22.3× faster than MPI for input size T1XXL and 18.5× faster than MPI for input

size T3XXL (using the best chunking and polling parameters for both HCMPI and

MPI).

69

Chapter 5

Locality Control of Compute and Data

Future extreme-scale systems will be severely constrained by energy and power bud-

gets. Innovative memory designs are expected to be critical for meeting those chal-

lenges. Current memory architecture designs in multicore systems typically involve an

off-chip large capacity low bandwidth DRAM module, and assisted by faster on-chip

low capacity high bandwidth coherent cache modules. There are two basic problems

in such designs. First, scaling the large DRAM for tightly coupled node architec-

tures to service thousands of cores on a node is not feasible because of energy and

bandwidth limitations. Second, scaling the current cache coherency designs is also

not feasible due to energy constraints and memory controller bottlenecks. Extreme-

scale designs will need to sacrifice both coherent memory as well as shared memory

per core. As a result, future memory designs for such architectures will target high

bandwidth fast local software controlled memory units that are physically close to

each processor.

A direct outcome of future memory architecture changes make software technology

a key factor in achieving high performance. Without a coherent cache architecture and

with fast local memories, software needs to explicitly control both data movement and

the consistency of shared data on the system. Intra-node data locality optimization

will have one of the biggest influences on performances and there two ways to approach

the challenge. One way is for compilers to optimize data layout and data access

patterns in order to get maximum reuse of the data inside a task’s computation.

70

There has been much past work related to the role of compiler in maximizing data

reuse. Another approach is to influence the spatial and temporal locality of task

computations that use similar data blocks in memory in order to get maximum reuse

of data across tasks. This is an area that has not been explored very well yet and

forms a part of our research focus. Both approaches can coexist. Finally, it also

necessary to optimize inter-node data distribution for applications such that we can

reduce the amount of inter-node communication. Such an optimization would also

directly translate into energy savings.

In this chapter, we focus on two areas for locality control. First, we present a pro-

gramming model for inter-node data distribution called HAPGNS (Habanero Asyn-

chronous Partitioned Global Name Space). HAPGNS is a distributed data-driven

programming model that integrates intra-node and inter-node macro data-flow pro-

gramming. We build this model on top of the HC-COMM runtime that was described

in chapter 4. Unlike the HCMPI programming model, HAPGNS does not require any

knowledge of MPI. In the second focus area for locality control, we describe a locality

tuning framework for controlling locality of tasks sharing the same data in a dynamic

task parallel environment. This framework is geared towards its use by experts with

detailed system knowledge. These optimizations aim to benefit from spatial and tem-

poral task locality using runtime co-scheduling of tasks for HPT, a hierarchical place

tree construct used to model the memory hierarchy of a system.

5.1 Research Contributions

The contributions of this research work can be summarized as follows.

• A novel macro data flow programming model for distributed systems, called

HAPGNS, is presented. The design and implementation uses the HC-COMM

71

runtime but the programmer is abstracted from the use of MPI. The HAPGNS

model allows users to control data locality with custom data distribution func-

tions.

• The design and implementation of the HPT model for the Habanero-C language

and runtime. The HPT model is drawn from past work in Habanero-Java [13]

with a few differences. First, the HPT implementation in HC maintains a deque

per worker on each place. This makes the process of pushing work on a place to

be non-synchronized with other workers. Second, the HPT model is completely

integrated with the Habanero-C runtime scheduler for both regular tasks and

data-driven tasks.

• The design and implementation of a novel deque resizing algorithm that enables

lock free expansion and contraction along with greatly reduced memory copy

operations.

• The design and implementation of a novel tuning framework that allows spatio-

temporal locality control of compute and data. We describe the tuning execu-

tion model which integrates a tuning scheduler and the HC runtime scheduler.

We integrate the tuning tree data structure with the HPT model for a unified

tuning framework.

5.2 The Habanero Asynchronous Partitioned Global Name

Space Model

Habanero APGNS (Asynchronous Partitioned Global Name Space), is a distributed

data-driven programming model that integrates intra-node and inter-node macro

72

data-flow programming. It does not require any knowledge of MPI. The model as-

sumes a global name space, instead of an address space as in PGAS languages. The

programmer perspective is to partition the problem size into data blocks referred

with globally unique identifiers. Data movement is abstracted with simple put and

get operations. The goal of this distinction is to simplify both programmability and

implementation of the model.

5.2.1 HAPGNS Programming Model

In the Habanero APGNS model, we introduce distributed data-driven futures (DDDF)

as an extension to the intra-node DDFs introduced in Section 3.2.2. DDDFs enable

unconstrained task parallelism at the inter-node level, without concerning the user

about details of inter-node communication and synchronization. Thus, DDDFs can

even be used by programmers who are non-experts in standard MPI. DDDFs carry

the dynamic single assignment property of a DDF object. They also include a node

affinity known as a home location. The API DDF HANDLE(guid) creates a handle on

a DDDF identified by guid, a user managed globally unique id for the DDDF. The

user provides two callback functions for the HCMPI runtime called DDF HOME(guid)

and DDF SIZE(guid). These functions should respectively provide a mapping from a

guid to a DDDF home rank and the put data size.

DDDFs can used just the same way as DDFs are used in the intra-node HC model.

DDDFs can be used for specifying task dependences in an await clause of an async

statement. Producer and consumer tasks coordinate data movement through put

and get operations. To understand the programming model better, let us consider

a simplified version of the Smith-Waterman local sequence alignment benchmark in

Fig. 5.1 as a DDDF example. A 2D matrix of DDDFs is allocated in which each DDDF

73

element corresponds to a 2D computation block on the SmithWaterman matrix. A

task is created for computation of each block and has 3 data dependencies: the left

tile on the same row, the upper tile on the same column and the diagonal tile on the

previous row and column. This is shown by the async await statement on line 25 which

the three dependences being above, left and uLeft. Once a task is ready for execution,

the 3 data inputs are fetched using the DDF GET API. The await clause ensures that

the DDF GET is a non-blocking call. Once the inputs are ready, the tile computation

is done inside the compute function. Finally, after the computation ends the DDF PUT

on the current tile DDDF is done to satisfy the dependence on other tasks waiting on

this tile. The code in Fig. 5.1 implements a distributed memory data-driven version

of the benchmark. The only change from a shared memory version is the use of DDF

HANDLE instead of DDF CREATE, and the creation of user-provided DDF HOME and DDF

SIZE function definitions. The DDDFs are of size Elem, which is the data type used

for DDF data fields in this benchmark. The DDF HOME macro in this example performs

a cyclic distribution on the global id, which enforces a row-major linearization of the

distributed 2D matrix.

The actual implementation of the SmithWaterman algorithm employs a 4D tiling

to exploit both inter- and intra-node parallelism. The 4D tiling is a hierarchical

decomposition such that outer level tiles are distributed among the nodes and each

outer level tile is further decomposed into inner level tiles to execute on the cores.

It’s parallelism structure is shown in Fig. 5.2. DDDFs are a natural fit for describing

such data dependence patterns and can seamlessly integrate the inter- and intra-node

level parallelism. OpenMP tasks or Cilk, on the other hand, require additional coding

efforts to describe these task dependencies, while OpenMP threads requires barrier

synchronization after every wavefront.

74

#define DDF_HOME(guid) (guid % NPROC)

#define DDF_SIZE(guid) (sizeof(Elem))

DDF_t** allocMatrix(int H, int W) {

DDF_t** matrix=hc_malloc(H*sizeof(DDF_t *));

for (i=0;i<H;++i) {

matrix[i]= hc_malloc(W*sizeof(DDF_t));

for (j=0;j<W;++j) {

matrix[i][j] = DDF_HANDLE(i*H+j);

}/*for*/ }/*for*/

return matrix;

}

DDF_t** matrix2D=allocMatrix(height ,width ,0);

doInitialPuts(matrix2D);

finish {

for (i=0,i<height ;++i) {

for (j=0,j<width ;++j) {

DDF_t* curr = matrix2D[i][j];

DDF_t* above = matrix2D[i-1][j];

DDF_t* left = matrix2D[i][j-1];

DDF_t* uLeft = matrix2D[i-1][j-1];

if (isHome(i,j)) {

async await (above , left , uLeft) {

Elem* currElem = init(DDF_GET(above),

DDF_GET(left),DDF_GET(uLeft));

compute(currElem);

DDF_PUT(curr , currElem);

}/*async */ }/*if*/ }/*for*/ }/*for*/

}/* finish */

Figure 5.1 : Simplified Smith-Waterman implementation

75

executed
running

DDF
DDDF

Figure 5.2 : Smith-Waterman dependency graph, its hierarchical tiling and execution

wavefronts

5.2.2 Implementation

The Habanero APGNS model is implemented as an extension of the runtime in-

frastructure described in Section 4.2. This runtime design extends the data-driven

scheduler to support distributed data-driven scheduling, and introduces listener tasks

on the communication worker. Distributed data-driven futures, introduced in Sec-

tion 5.2.1, are created using the DDF HANDLE interface. The call always returns a

locally allocated handle. The user-provided DDF HOME function is used by the cre-

ation routine to identify if the DDDF is owned locally or remotely, and the local

handle is marked accordingly. The DDDF home provides a fixed location for remote

tasks to either transfer data in case of a remote put or to fetch data in case of a

remote get.

In a typical Habanero APGNS program, after a producer task completes compu-

tation on a data block, it performs a put operation on the associated DDDF object. If

the put happened on a remote node, then the data is transferred to it’s home location

through a listener task. Listener tasks are persistent tasks that the DDDF runtime

76

uses on a communication worker’s worklist to listen to asynchronous messages with

predefined tags. The runtime executes a global termination algorithm to take down

all the listener tasks at the end of the program. These tasks support a handler rou-

tine which is called by the communication worker whenever a message arrives for the

listener. In the case of a remote put received by the listener, the handler routine

would make sure that the data is first buffered locally. The follow-on operations at

the home location are common for both the local and remote put. The runtime checks

if there are any outstanding fetch requests of the DDDF data, and if so, then the data

is transmitted to all of them. Then the communication worker starts another listener

task for this particular DDDF object to respond to future fetch requests.

On the consumer side, a data-driven task performing an async await on a remote

DDDF would register on the local copy of the DDDF handle. After the first DDT

registers, the runtime sends the DDDF home location a message to register its intent

on receiving the put data. The runtime also allocates a local buffer to receive the

data, and waits for the response from the home node. Once the data arrives, the

runtime does a put on the local DDDF handle. This releases all DDTs registered on

the local handle. A consumer node always keeps a locally cached copy after the data

arrives so that every subsequent await can immediately succeed. The dynamic single

assignment property of DDDFs ensures the validity of this local copy. Hence, the data

transfer from home to remote happens at most once.

The basic idea behind distributed DDFs is similar to the Linda [102] coordination

language. The Linda model works with a tuplespace, akin to a globally shared memory,

and supports operations such as in, out, rd and eval. The out and rd operations write

and read from the tuplespace, similar to the put and get operations supported by the

DDDF model, while the in operation destructively reads from the tuplespace. While

77

the DDDF model is based on the single assignment property of data objects, Linda

allows multiple assignments. This causes a complication for the Linda runtime as

data needs to be coordinated by a runtime manager process. For example, an out

operation broadcasts that write to all the processors. Also, without the support for

data distribution function like the DDDF model, Linda’s performance comes at the

cost of communication bandwidth and local memory.

5.2.3 Results

Habanero APGNS provide high programmability where simple extensions to existing

shared memory programs can create a scalable distributed memory application. We

introduced a simple Smith-Waterman benchmark in section 5.2.1 and here we show a

hierarchically tiled implementation of the benchmark. This implementation performs

hierarchical tiling as in Figure 5.2. This allows us to tune granularity to minimize

communication for the outer-most tiling and to minimize intra-node task creation

overhead for the inner most tiling, while retaining sufficient parallelism at both levels.

An outer tile consists of a matrix of inner tiles, and three DDDFs. On Figure 5.2,

we show an enlarged outer tile consisting of a matrix of inner tiles. To minimize

communication, the DDDFs for the outer tile are the right-most column, the bottom-

most row and the bottom-right element, since these are the edges of a tile visible

to neighboring tiles. Similarly, an inner tile encapsulates a matrix of elements and

three shared memory DDDFs to represent the intra-node visible edges of an inner tile.

Given this representation of the dynamic programming matrix, we have exposed both

the inter-node and intra-node wavefront parallelism through registering neighboring

tiles’ distributed and shared memory DDDFs respectively.

On Figure 5.3, we present a scaling study of the implementation mentioned above.

78

8	 16	 32	 64	 96	

2	 Cores	 1955.09	 942.67	 479.40	 258.05	 192.79	
4	 Cores	 668.94	 336.27	 184.07	 109.53	 86.57	
8	 Cores	 294.96	 155.20	 87.55	 49.98	 37.01	
12	 Cores	 192.30	 102.16	 57.18	 32.85	 24.39	

20	

200	

2000	
lo
g	
Ti
m
e	
(s
)	

Nodes	

SmithWaterman	 Scaling	 	

2	 Cores	 4	 Cores	

8	 Cores	 12	 Cores	

Figure 5.3 : Scaling results for Smith-Waterman for 8 to 96 nodes with 2 to 12 cores

Our sequences are of length 1.856M and 1.92M, giving us the dimensions for our

matrix. We chose tile sizes 9280 by 9600 for outer tile sizes for a matrix of 200 by

200 tiles.

We chose this tile size to ensure the number of wavefronts provides sufficient

slackness with respect to the number of nodes. The top left and the bottom right

sections of the matrix do not provide sufficient parallelism and as their size passes

beyond a minute fraction, it constrains parallelism due to Amdahl’s law. Since the

number of parallel tasks at any given time is the size of an unstructured diagonal (as

in figure 5.2), to provide enough parallelism, we need to have at least a factor of the

number of nodes on most diagonals. The same logic applies to the inner tiles too,

and we have chosen 290 by 300 tile sizes to have 32 by 32 tiles.

79

Using a distribution function, DDF HOME, for DDDFs, we implemented a tiling

strategy as follows. Every proper diagonal is measured in size and every contiguous

chunk of that diagonal is assigned to nodes iteratively. This provides a mapping to

nodes which for each node creates bands perpendicular to the wavefront and leads to

less communication.

Given a fixed number of cores we observe speedups in the range 1.7 − 2 when

doubling the number of nodes until 64 nodes. This trend is hampered on the 64 node

to 96 node jump because, because the first and last 96 diagonals do not have enough

parallelism for 96 nodes, where the total number of diagonals is 399.

Given a fixed number of nodes, we observe speedups in the range 2.2-2.9 for 2 to

4 core case, since one of the workers is designated as a communication worker. The

range is between 5.2-6.6 for 2 to 8 cores (for 1 to 7 computation workers), and 7.9-10.2

for 2 to 12 cores (for 1 to 11 computation workers).

5.3 Habanero-C Tuning Framework

The software challenges in future extreme-scale systems are compounded by the need

to support new workloads and application domains that have traditionally not had

to worry about large scales of parallelism in the past. Adapting these applications to

run optimally on extreme-scale systems would be beyond the expertise of program-

mers with only domain knowledge. As a result, a tuning expert with detailed system

knowledge will extract superior performance from the application. However, with-

out a detailed knowledge about the application domain, the tuning expert will find

it difficult to be highly productive. We aim to bridge this gap between the tuning

and domain experts by forming a tuning framework which makes it possible for the

tuning expert to make performance optimizations without much domain knowledge.

80

The considerations of parallelism, load balancing and locality, are separate from con-

siderations of the application domain and algorithms. When creating or modifying

the application algorithms, there are no explicit parallel constructs to worry about.

When thinking about mapping to the platform, there is no need to wade through the

application semantics. The tuning framework targets performance benefits from spa-

tial and temporal locality of tasks in a dynamic task parallel environment. With the

cost of moving data projected to become increasingly prohibitive in future, the per-

formance of a system will be increasingly sensitive to the the spatio-temporal locality

of tasks which access common data blocks. Spatial locality of tasks mean execution of

parallel tasks on parallel processors with a shared memory structure. Spatial locality

should also be in combination with task temporal locality for tangible performance

benefits due to the limited size of memory units in future memory designs.

5.3.1 Hierarchical Place Trees for Spatial Locality

Future extreme scale systems are expected to have computing nodes containing thou-

sands of processor cores and designing a memory subsystem for such an architecture is

great challenge. It will not be feasible to build a large DRAM-like memory structure

shared among all processor cores mainly due to bandwidth and power limitations.

Current indications point towards an architecture with deep memory hierarchies with

computing cores provided with fast local limited memories. Data accesses latencies

are expected to dramatically increase as memories further up the hierarchy are used.

Exploiting data locality in parallel programming on those complex is a challenge

for users. Prior compiler and runtime research has proved that, in sequential code,

lots of data locality optimization can be achieved by advanced data flow analysis

and sophisticated code transformation techniques, such as polyhedral model. Efforts

81

to bring those techniques into parallel programming needs supports from both the

system modeling and the runtime. We present our approach of modeling complex

memory hierarchy of various computing systems as a hierarchical place tree (HPT).

HPTs provide an abstraction powerful enough to exploit locality at each level in the

memory hierarchy, without compromising performance. Finally, it is a step towards

performance tuning optimizations with explicit data locality control on exascale sys-

tems.

HPTs in Habanero-C abstract the underlying hardware using trees, which closely

model the memory hierarchy of the node. It allows the program to spawn tasks at

places, which for example could be cores, groups of cores sharing cache, nodes, groups

of nodes, or other devices such as GPUs or FPGAs. Figure 5.4 shows an example

HPT implementation structure of a Intel Xeon Dual Quad Core machine. A single

node of this machine has a shared DRAM for all 8 processor cores. The chip has

2 sockets with 4 processors in each socket. The processors in each socket share a

single L3 cache. Within each socket two groupings of 2 processors share a L2 cache.

Each processor core comes with it own local L1 cache. The HPT structure shown in

Figure 5.4 implements this memory hierarchy as a 3 level binary tree. Every node in

the tree refers to a particular instance of the memory hierarchy. The leaf level nodes

refer to the L1 cache of each processor core. The levels above the leaf refer to the L2

and L3 caches in the machine with the root of the tree referring to the shared DRAM.

In the HPT each node of the tree is an unique place. Places are usually numbered

starting at the root and proceed in a breadth first manner.

The Habanero-C language uses the AT clause with the async statement to spawn

a task at a place. The AT clause takes a place argument. A typical usage is:

async AT(p) 〈stmt〉

82

q0	 q1	 q2	 q3	 q4	 q5	 q6	 q7	

P0

P1 P2

P3 P4 P5 P6

P7 P8 P9 P10 P11 P12 P13 P14
L1	

w0 w1 w2 w3 w4 w5 w6 w7

steal	

push / pop async AT(p3)

L2	

L3	

DRAM	

Figure 5.4 : An example HPT structure

83

This spawns the new task with body 〈stmt〉 at the place p. This way HPTs allow for

explicit control of task locality on the system with the intention of shared data reuse.

Worker threads, which are proxy for processor cores, are associated with leaf nodes

of the HPT. A leaf place can have one or more worker threads attached. When a

leaf place has only one worker thread attached, the node is usually the local exclusive

memory of that processor, such as the L1 cache. However, if a place node in the HPT

has multiple children, such as an internal node, or multiple workers on the leaf node,

then, that place usually refers to a shared memory level. A task spawned at such a

place will be executed by the worker thread associated with the subtree under that

node. For example, a task that is put in place p3 can be executed by either worker

thread w0 or w1. The main idea of the HPT is to limit access, as much as possible, to

tasks to the set of worker threads in the subtree that share some memory hierarchy.

However, a task placed in place p7 can only be executed by worker w0. The HC

runtime provides APIs that help navigate the HPT structure and get a handle on a

place.

5.3.2 Tuning Framework for Spatio-Temporal Task Locality

The Habanero tuning framework is a set of API’s that can guide the execution of

a task parallel program written in Habanero-C. The goal of the tuning framework

is to support a tuning language or specification that can target these API’s at the

assembly-language level. This framework will use a separate tuning specification

with distinct capabilities but used to complement the domain specification. Multiple

tuning specifications can be associated with the same domain specification to target

different in optimization goals on a target platform architecture. The foundation of

the tuning specification is to identify computations that should be close in both time

84

(a) Target Platform (b) Tuning Tree

Figure 5.5 : Tuning tree of queues matches the target platform structure

and space. Closeness is identified by hierarchical affinities among computations and

data. This allows the indication of relative degrees of locality. The basic concept of

the tuning specification is the affinity collection, a group of steps, implemented as

tasks, that the tuner suggests should be executed close in space and time. Hierar-

chical affinity groups allow the specification of relative levels of affinity, with tighter

affinity at lower levels. Computations that touch the same data will not benefit from

locality if they are too far apart in space or time. Hierarchical affinity groups are the

tuning mechanism for indicating computations that must be proximate in both time

and space. The tuning API provides the tuner with a mechanism to influence the

scheduling of parallel tasks to take advantage of the space and time locality benefits.

The tuning execution model is based on a representation of the target platform, as

shown in Fig. 5.5a. We currently assume that the platform is hierarchical, although

the model can be adapted to other structures as well. The platform description names

each level, for example, Level1, Level2, etc. or it might be address space, socket, core,

etc. We distinguish between two components of the runtime: the tuning runtime and

85

the domain runtime. The tuning runtime serves as a staging area for the execution

of steps in the domain component. A tuning action is defined for each affinity group.

Tuning actions specify the low-level processing for that group in the tuning tree. The

tuning actions control the flow of work to the domain runtime. The tuning tree has

the same shape as the platform tree. There is a work queue associated with each node

in the tuning tree, shown in Fig. 5.5b. The items in the queue are either static affinity

groups/steps or dynamic instances of affinity groups/steps. Each queue contains work

that is ready for an action to be performed (such as moving down the tree) and work

that is not ready. The tuning runtime system selects from a queue the ready work

item(s) that are nearest the head of the queue. Large static outer affinity groups start

at the top of the tuning tree. As an affinity group is moved down a level in the tree, it

will be decomposed into its components. Since components of a group at some node

only move to children of that node (there is no work stealing), they have a tendency

to remain close in the platform, in that nodes in the tuning tree correspond to nodes

in the platform tree. Figure 5.6 shows an example tuning action for unpacking a

group and moving it down the tuning tree. to execute a step, it has to get released

from the tuning runtime onto the domain runtime. The set of tuning APIs that are

currently supported are:

TUNING PUT AT ROOT (group, args)

places a group or step at the root of the tuning tree

TUNING MOVE DOWN (group, args)

moves a group or step down unmodified one level in the tuning tree

TUNING DISTRIBUTE AMONG CHILDREN (nargs, group, args)

unpacks a group and distributes the components among the children of the node

86

(a) Tuning group of steps (b) Tuning unpack and move down

Figure 5.6 : Tuning action to unpack a group and move down the steps

TUNING RELEASE STEP (step, args)

places the step onto the domain runtime for execution

5.3.3 HPT Implementation

The HPT structure for a Habanero-C program is specified as an XML input document.

If the HPT input is not specified, the HC runtime assumes a single place consisting of

all the workers. Figure 5.7 shows the XML file structure for the Intel Xeon Dual Quad

Core machine HPT shown in Fig. 5.4. The nested structure of the place attributes

show the tree hierarchy and the num values replicate the subtree on each child of a

node.

The Habanero-C work-stealing runtime, described in Section 3.2, takes advantage

of the HPT hierarchy to preserve locality when executing tasks. In our design, any

worker can push a task at any place in the HPT. Each place in the HPT contains one

deque per worker. For example, Figure 5.4 shows each place having 8 deques, q0 to

q7, for the 8 workers, w0 to w7. This gives each worker the ability to perform non-

synchronized push and pop operations on their own deques at each place. The steal

87

<?xml version="1.0"?>

<!DOCTYPE HPT SYSTEM "hpt.dtd">

<HPT version="0.1" info="Dual quad -core Intel Xeon">

<place num="1" type="mem">

<place num="2" type="cache"> <! sockets >

<place num="2" type="cache"> <! L2 cache >

<place num="2" type="cache"> <! L1 cache >

<worker num="1"/>

</place >

</place >

</place >

</place >

</HPT >

Figure 5.7 : An example of a HPT XML description

88

operations, however, have to be synchronized. The HC runtime limits pop or steal

operations at a place to only the workers in the subtree of that node. For example,

workers w0 and w1 only are permitted to perform pop and steal at place p3. Any of

workers w0 to w7 are permitted to push at p3.

In the current scheduling heuristic employed by the HC runtime a worker starts

the search for an executable task at the leaf place it is attached to. It first tries to

pop tasks on its own deque in the place. If it fails to pop a task, it tries to steal from

the other deques in the same place. When a worker runs out of work at a place, it

tries to look for work at the parent place. The worker traverses the path from leaf

to the root in search of work. After any successful pop or steal, the work executes

the task and then resumes the search from it’s own deque on the leaf place, where it

started from initially. The HC runtime makes sure that the worker threads are bound

to the appropriate cores to resemble the correct sharing of the memory hierarchy.

One drawback of this design is the O(n2) number of deques on the system, where

n refers to the number of workers. Although, this design provides non-synchronized

push operation of a worker at any place, the overhead of searching for work increases.

Each of n workers will search for work on O(n log n) deques. We are currently

working on more efficient designs that will minimize this overhead without making

all workstealing operations synchronous. One of design choices being considered is to

maintain a deque per place for only those workers that are in the subtree and keep

a separate deque for all other workers. So, if a worker is trying to push at a place

while being outside the subtree of that place, that push would be a synchronous one.

This rationale is based on application experiences where it was observed that the

frequency of pushes to a place from a worker external to its subtree is relatively lower

than pushes from within the subtree.

89

Scalable Deque Implementation

The current HC implementation requires all deques be initialized at the start of the

program to a fixed size. The size of the deques may be set by the user (with the

−deqsize runtime option) to be the maximum value that will fit all tasks than can

potentially exist on one deque at any given instant. This is a problem because it may

not always be possible to know this number before running the program. As a result,

the user may try to over-provision the deque with a unnaturally large size to prevent

deque overflow. This problem is exacerbated by the use of HPTs. We have seen from

our design of the HPT that every place contains one deque per worker, meaning O(n2)

deques for n workers. If large fixed sized deques are used, this would prove to be a

severe scalability bottleneck for future extreme scale systems which are expected to

have O(103) processor cores per node.

This problem can be solved if the HPT is initialized with small resizable deques

which can grow and shrink during program execution. It would avoid having the user

to guess the largest deque size to avoid deque overflow. Further, one large fixed size

need not be applied uniformly on all deques. On extreme scale systems, although

there would be a high number of deques, the space complexity would be greatly

improved. An efficient resizable deque solution will have two key requirements:

• Wait-free deque resize - We want to avoid freezing the deque when resizing so

that concurrent steals are possible.

• Zero data copy - We want to avoid copying the whole deque for faster and

reliable resizing.

The HC deque described in Section 3.2 supports push, pop and steal operations.

The deques contain a head and tail to index both ends. Our solution for the resizable

90

tail

null null null

buckets …

head

0	 1	 -‐1	 -‐1	 -‐1	 Bucket map …
0 1 2 3 4

Figure 5.8 : Bucket deque expansion

deque is called the bucket map approach as shown in Figure 5.8. Deques are allocated

in small chunks, called buckets, which are created and destroyed during the lifetime of

a program. A new bucket is created when a deque needs to expanded, while a bucket

is destroyed when the deque shrinks. Each bucket is physically indexed through a

bucket array. However, to map a head or tail position to a physical bucket, we use a

bucket map. The bucket array and map are of the same size. In our design, the head

and tail will keep increasing with the head following the tail in case of steals. The

deque structure is initialized with the bucket array containing one deque bucket in the

first location, or bucket[0]. When this deque fills up and needs to be expanded, a new

bucket is allocated. The deque expansion scheme is shown in Figure 5.8, expanding

the deque to two buckets. The new bucket is placed at the first available or null

position in the bucket array. In this case, the first available position was the second

location, or bucket[1]. The bucket map keeps track of this position by recording this

bucket array index in the map. So, for example, when the tail has to be mapped to a

bucket, we first need to find out the virtual bucket that contains the tail. The virtual

91

tail

null null null

buckets …

head

0	 1	 0	 -‐1	 -‐1	 Bucket map …
0 1 2 3 4

Figure 5.9 : Bucket deque reuse after contraction

bucket index on the bucket map provides the physical index into the bucket array for

the actual physical bucket.

Now, say the steals on deque has reduced the deque size down to one bucket after

it had expanded to two buckets. So, the bucket in position 0 of the bucket array is

no longer used and it is freed. However, when the deque needs to be expanded once

more, the new bucket can now be placed in bucket array position 0. This bucket

reuse scheme is shown in Figure 5.9. The tail now has to map to the new location of

the physical bucket via the bucket map. Hence, we can see that the virtual bucket

index of the tail in the bucket map, which is 2, now contains the index 0, the actual

physical location of the bucket.

Algorithms 1 shows the implementation of the deque push operation. Here, we

can see how we use the deque tail (deq.tail) to identify the physical location of the

deque where the task will be pushed. Since, the tail increases infinitely, we divide that

number by the size of each deque bucket to get the virtual bucket number (vb) of the

92

Algorithm 1: Push operation for resizable deques

if deque is full then

expand(deq);

end

vb ← deq.tail / deq.bucketSize ; // virtual bucket

mapIdx ← vb % deq.mapSize ; // bucket map index

b ← deq.bucketMap[mapIdx] ; // physical bucket

deq.buffer[b][deq.tail % deq.bucketSize] ← entry ; // setup task

deq.tail++ ; // push task

tail. This virtual bucket number should have an entry on the bucket map. Since, the

map is limited in size, the virtual bucket number should wrap onto the bucket map.

The deque buckets cannot be larger than what the bucket map supports. Hence, the

virtual bucket remainder from the map wrap give us the bucket map index (mapIdx).

We get the physical bucket (b) from the bucket map. Now, we are able to index onto

the physical bucket where we place the task (entry). We complete the push operation

by incrementing deque tail. For better efficiency divides and remainder operations

can be replaced by shifts and & operations if bucket and map sizes are maintained

at powers of two. The pop and steal operations, described in Section 3.2.3 have been

similarly modified to use the bucket map approach. When the number of slots on the

bucket array are completely full, the bucket array and bucket map will doubled and the

data copied from the old arrays. Doubling the size keeps the modulo indexing same on

the bucket array and map which keeps the concurrent steals going [78]. We currently

do not free the old bucket array and map because it provides a way for threads to

recover after being suspended while stealing. Chase and Lev [78] use a similar scheme

93

Figure 5.10 : Releasing steps from tuning tree to domain tree

but the amount of memory that is not freed in our algorithm is drastically less than

theirs. Consequently, in our algorithm the amount of data copied will be an order of

magnitude less while maintaining wait-free deque expansion and contraction.

5.3.4 Tuning Tree Implementation

The tuning runtime implementation is based on the DDF model, introduced in sec-

tion 3.2.2. In this model, a consumer task can be created with an await clause to

specify the incoming dependence. A producer task can satisfy an outgoing depen-

dence by performing a put on that dependence variable. A tuning specification is

currently translated manually to Habanero-C data-driven tasks (DDTs) for execu-

tion. We use DDTs to specify the tuning actions, and DDFs to specify the tuning

dependences for groups and steps in the program.

We implemented the platform tree described earlier using Habanero-C’s Hierar-

chical Place Trees. In our preliminary implementation, we use the HPT configuration

as the tuning tree. An HPT configuration is specified by an XML file. This file can

94

specify a node (or place) in the HPT to be a tuning place. These tuning places

contain a special kind of task queue used exclusively for tuning. When a group or

step is pushed down a path in the tree, as specified in a tuning API, it gets enqueued

into the tuning queue at that child place. When a step get released from the tuning

tree, it gets immediately executed. HPT places also contain double-ended queues

(deques). Any task that is not created by the tuning runtime gets scheduled at the

deques in the HPT places. We have modified the Habanero-C runtime scheduler to

perform both tuning actions and domain (user code) scheduling. We handle all tun-

ing tasks, both groups and steps, in the tuning runtime scheduler. All other tasks in

the application are executed in the domain runtime scheduler. A worker thread first

searches for domain work. It executes all tasks in its own deque before searching for

more domain tasks to steal from other workers. If the worker fails to find any domain

work, it switches to the tuning scheduler. The tuning scheduler starts searching for

work at the leaf node and moves up to the root. When it finds a tuning task at any

node in the path from leaf to root, the worker locks the queue, executes the tuning

task, unlocks the queue and finally switches over to the domain runtime. The locking

of the queue ensures that the tuning actions in a tuning queue is completed in the

order that they were enqueued in. Maintaining the order is critical for maintaining

temporal locality. Figure 5.10 shows the action of releasing steps from the tuning

runtime to the domain runtime. The tuning tasks are based on a set of tuning APIs.

As mentioned before, the tuning APIs can push a group or step down the tuning

tree. This operation involves pulling the tuning task from a nodes tuning queue and

pushing it onto a child nodes tuning queue. These operations are synchronized with

locks to handle concurrent enqueues and dequeues.

95

5.3.5 Results

In this section we look at some preliminary results of our experiments using the

HPT. We use the Cholesky decomposition benchmark for our experiments. Cholesky

decomposition is a dense linear algebra application that exploits loop, data, task and

pipeline parallelism. The base version of this benchmark used in our experiments is

implemented using data driven tasks [77]. This implementation of the benchmark

runs a tiled version with each tile on every iteration being executed by a unique

task. This data driven implementation enables an unconstrained execution of tasks

that is not restricted by a structured task parallel model. Tasks get scheduled once

their dependencies are satisfied. Figure 5.11 shows the dependence structure in a

tiled Cholesky execution of one particular iteration instance. The iterations proceed

with a pivot tile computation on the diagonal. The pivot tile in one iteration plane

computes the serial Cholesky step. Once that is done, the trisolve steps are able to

run on the pivot column. The trisolve computation enables the rest of the update

computations tiles in the iteration. Each tile also had a dependence on itself in the

subsequent iteration. We have not shown that dependence in the figure.

We run our experiments on a single node of the DaVinCi cluster at Rice University.

Each computing node consists of an Intel Westmere processor with 12 cores running

at 2.83 GHz. The 12 cores are divided into two sockets with 6 cores in each. Each

socket consists of a shared L3 data cache of 6MB. Every cores has it’s own local

L1 and L2 data caches of size 32KB and 256KB respectively. The only data reuse

within an iteration is from the reuse of the trisolve tile by the update tiles. However

as shown in Figure 5.11 that all the update computations in one row uses all the

trisolves until that row. As a result, trying to localize the computations to some part

of the memory hierarchy would be difficult for the trisolve steps. So, our strategy for

96

Cholesky	

Trisolve	 Update	

Figure 5.11 : Cholesky decomposition dependences

97

9.572	

8.235	
6.945	 6.609	 6.573	

6.851	 7.258	

8.278	

11.595	

6.751	 6.122	
6.329	 6.331	 6.361	 6.865	

7.549	
8.393	

11.789	

0.000	

2.000	

4.000	

6.000	

8.000	

10.000	

12.000	

20	 25	 40	 50	 60	 75	 100	 125	 150	

Ti
m
e	
(s
)	

Tile	 Size	

Cholesky	 6000x6000	

Base	 HPT	

Figure 5.12 : Cholesky decomposition execution times for various tile sizes

exploiting data reuse is across iterations. We ensure that tiles in successive iterations

are able to execute on the same socket so that they can benefit from L3 cache reuse.

Also, since our experimental platform has two sockets, we divide the tiles on each

iteration evenly between the sockets so that we don’t lose much parallelism. Let us

recall that our current HPT scheduling heuristic does not allow a worker to explore

a new subtree while for searching stealable tasks. So, we lose some bit of parallelism

due to the slight imbalance between sockets when the division is not perfect.

Figure 5.12 compares performance of the base version against the HPT version.

We show execution times for varying tile sizes. In general, the HPT version performs

better than the base version. The slight crossover in performance noticed past tile

size of 75 is attributed to the loss of parallelism resulting from a higher tile size. This

is due to our scheduling heuristic which does not allow a worker to search for work in

98

a different subtree. It can be seen that the execution times point out an best tile size

for each version of the benchmark. However, the best tile sizes are different the base

and HPT versions. The best time achieved by the base version is on a tile size of 60

and a time of 6.57 seconds. The HPT version on the other hand achieves it’s best time

of 6.12 seconds on a tile size of 25. This shows approximately 7% speedup achieved

by the HPT version. Investigating this result further we were able to identify that the

benchmark was compute bound. We found only 15% of execution time was actually

being spent on memory accesses. In light of our finding, we believe that 7% speedup

is about the maximum that can be achieved by any HPT version that optimizes on

cache reuse.

Past work by Husbands and Yelick [103] proposed that for the LU factorization

benchmark a prioritization of the tasks on the row and column of a pivot, called

panel factorization, leads to better performance as it exposes more concurrency in

the application. A similar approach will help Cholesky factorization as well but the

current HPT model does not (yet) have a notion of priority for tasks. However,

the tuning framework (with a modification of the scheduling heuristic) can enforce

priorities on tasks execution. As an example, if high priority tasks arrive in the tuning

tree when the domain runtime is already working on a set of tasks on the HPT, the

scheduler should be able to pick up those tasks before completing all pending tasks.

The tuning tree can keep a queue of high priority tasks for each worker. This requires

a modification in the scheduler to check the tuning tree before it tries to pop a task

from a deque in the HPT. In this way, both priority and locality can be controlled by

the tuning expert. This approach will be considered in future work.

In this section we will also present results of our experiences with the tuning frame-

work. We have experimented with two applications, namely, Cholesky factorization

99

and Rician denoising. We will present results of the Cholesky tuning experiment fol-

lowed by the Rician denoising results. Our experimental platform is a 12-core Intel

Westmere processor that contains two sockets with 6 cores each and a shared L3 cache

in each socket. The tuning tree consists of 3 levels, with the root node as the DRAM

memory. The second level contains 2 nodes to represent the 2 sockets. Each node in

the second level had 6 children to represent the individual cores in the socket.

Tuning Cholesky Factorization

We have implemented multiple tuning specifications for the Cholesky Factorization

program written in HC. While our current transformations from tuning specifications

to DDTs are performed by hand, an implementation of a translator that will automat-

ically generate DDTs from the tuning specification is a straightforward candidate for

future work. We created an outer level group called GroupC, as shown in Figure 5.13.

GroupC contains the Cholesky step and another group called GroupTU, which con-

tains the trisolve and update steps. For example, a tuning function for the Cholesky

group described above that releases the Cholesky step to the Habanero-C runtime for

execution, while distributing the GroupTU among children can be written simply as:

We present two sets of experiments, namely Set1 and Set2. In the first tuning

specification (Tuning1) of Set1, we the placed the GroupC instances on the root node

queue of the tuning tree. When a worker pulled a GroupC instance out of the root,

it placed the Cholesky step for execution on either child. It then distributed the

GroupTU instances among the two sockets. A worker that picked up a GroupTU

would then unpack and execute the trisolve and update steps within the socket. The

second tuning specification (Tuning2) of Set1 moved a GroupC instance down a child

before unpacking GroupC. Subsequently the Cholesky step is placed in the socket

100

void groupC(void * args) {

int k = ((cholesky_args *)args)->k;

int numTU = numTiles - (k + 1);

TUNING_RELEASE_STEP(cholesky_step , args);

TUNING_DISTRIBUTE_AMONG_CHILDREN(numTU ,

groupTU , args_set[k]);

}

Figure 5.13 : Tuning actions on GroupC, the outer level group in Cholesky

level node while the GroupTU instances are distributed among the 6 children. This

tuning restricts the execution of each instance of GroupC, that is, the Cholesky step

and all the GroupTU instances, containing the Trisolve and Update steps to execute

inside one socket. Further, each GroupTU instance executes only on one core. The

Set1 experiments were performed on a 2000x2000 matrix and the results are shown

in Figure 5.14. The results indicate that Tuning2 slowed down by almost a factor of

2 with respect to Tuning1, while the idleness of Tuning2 was 14.7× that of Tuning1.

The reason for the slowdown in Tuning2 was that the schedule was constrained in

parallelism when the groups were pushed down to one more level in the tuning tree.

Tuning1 runs faster but Tuning2 would consume less power. This result implies that

a tuning specification can affect performance and power at the same time.

In our second set (Set2) of experiments, we keep Tuning1 from Set1 which per-

forms the row grouping of trisolve and updates as the first tuning specification. The

second and third tuning specification would group some TU rows while others were

grouped in columns. This division among the row and column grouping could ei-

101

Figure 5.14 : Set1 Cholesky Tuning experiments on 2000 x 2000 matrix

6.649	
6.332	 6.306	 6.326	 6.350	 6.422	 6.301	

0.000	

1.000	

2.000	

3.000	

4.000	

5.000	

6.000	

7.000	

Untuned	 Tuning1	 Tuning2	 Tuning3	 Tuning4	 Tuning5	 Tuning6	

Ex
ec
u8

on
	 T
im

e	
(s
)	

Cholesky	 Tuning	

Figure 5.15 : Set2 Cholesky Tuning experiments on 6000 x 6000 matrix

102

ther dynamically adjusted with increasing number of iterations or statically assigned.

Tuning2 does the dynamic adjustment while Tuning3 does the static assignment.

Tuning4 tries to improve Tuning2 by coarsening the groups towards the tail end of

the iterations in order to benefit from granularity of the steps. Tuning5 and Tun-

ing6 simply puts all tasks at the socket level, the difference being that Tuning6 does a

chunked distribution of the tiles. Results of the experiments are shown in Figure 5.15.

Our untuned baseline version is an optimally tiled version. Tuning tries to achieve a

better schedule for the execution of the tiles. We see that our maximum speedup of

5.16% is obtained from Tuning2. As mentioned earlier, speedups over an already tiled

compute bound application will be limited. Comparing to the speedups obtained in

the HPT experiment, the tuning shows a slightly lesser speedup. We attribute this

to the overhead of maintaining the tuning scheduler. The tuning however is able to

perform these optimizations without modifying the original application which was

not the case with the HPT experiment.

Tuning Rician Denoising

In this section, we present the tuning experiments for the Rician Denoising appli-

cation, which is used as part of the medical imaging pipeline in the CDSC project.

This application performs a five-point stencil computation on every tile in parallel.

This computation is done iteratively until a convergence value is reached. Figure 5.16

shows the dependencies between the various steps both within and across iterations.

For example, uDiffCompute reads uData stencil elements from the previous iteration

while gCompute, ugCompute and rCompute read data only on the current iteration.

uCompute reads data both from the previous and current iteration. This complicated

dependence pattern can be simplified by grouping the steps as shown in Figure 5.17.

103

Figure 5.16 : Rician denoising dependencies

Figure 5.17 : Grouped rician denoising steps

104

Figure 5.18 : Pyramid computation for tiles in successive iterations

19.66	 20.16	

35.48	

55.26	

16.86	 16.91	 15.93	 16.04	

0.00	

10.00	

20.00	

30.00	

40.00	

50.00	

60.00	

64	 60	 40	 32	

Ti
m
e	
(s
)	

Tile	 Size	

Rician	 Denoising	 matrix	 size	 (7680x7680)	 and	 30	 itera<ons	

orig	 untuned	 precompute	 pre+coreBlock	

pre+coreBlock+wave	 pre+pyramid	 (unordered)	 pre+pyramid	 (ordered)	

Untuned	 best	 Tuned	 best	

Figure 5.19 : Rician Denoising performance comparison of untuned vs tuned

105

In our tuning specification we call this the precompute group. Starting with this

precompute specification, we formulated two tuning strategies. In the first strategy,

we make simple iteration-wise tile executions. The ”pre+coreBlock” tuning uses

the precompute step and schedules a block of tiles in each iteration on each core.

The matrix rows are first divided into sockets, followed by division into cores. The

”pre+coreBlock+wave” tuning has each core trying to execute the scheduled set of

tiles in a wavefront pattern. The second tuning strategy uses a pyramid computation,

in which the motivation is to reuse tiles computed at current iteration in the next

iteration, as shown in Figure 5.18. Since the stencil computation reads data from

neighboring tiles, the plane of computation in successive iterations that use the same

tiles will be decreasing. Layering these successive diminishing planes on top of each

other, we get a visualization of a pyramid. In order to to benefit from the tile reuse,

the whole pyramid must fit in the socket level shared L3 cache. The ”pre+pyramid

(unordered)” tuning schedules the pyramids onto the sockets in unordered fashion.

In the worst case, every worker may pull a different pyramid onto the socket. The

”pre+pyramid (ordered)” tuning orders the pyramids such that a new pyramid is

brought in only when the current pyramid is close to being done. Figure 5.19 shows

the results of the tuning experiments and compares against the untuned version.

Overall, the best tuned time we got was 15.93 seconds. Compared to the best untuned

time of 19.65 seconds, the best tuned version shows an improvement of 20%. It is

interesting to note that the ordered computation on the pyramid tuning produced the

best result. In that tuning we hold back execution of steps to execute them together

and that proves to be the better strategy than the unordered one. Hence, this is

a proof of concept that temporal locality of tasks will make a positive impact on

performance.

106

Past work for optimizing stencil computation include cache-oblivious algorithms,

auto-tuners and domain specific stencil compilers [104, 105, 106]. They target data

reuse from trapezoidal computations, similar to the pyramid structure in our work.

The key difference is that the data reuse they target is specific to the cache hierarchy

of each processor, while our work aims to benefit from data reuse of the shared caches

through runtime co-scheduling of computations. For example, in our experimental

platform, the Pochoir stencil compiler [106], would optimize data reuse for L1 and L2

caches, where as our tuning framework gets reuse from the L3 cache that is shared

among the cores in a socket. For current stencil compilers, all shared cache reuse

is fortuitous. In our experiment, we used flat tile computations. Using trapezoidal

tiles instead, as generated by stencil compilers, would further improve our perfor-

mance. Hence, integrating stencil compilers and our runtime tuning framework will

be an important area of future work. Cache-oblivious algorithms target data reuse

through recursive decomposition of a regular computation space. In contrast, the

tuning framework is able to handle different types of computations at different levels

of the hierarchy. Cache-oblivious algorithms also are based on many assumptions

that may not hold for extreme-scale systems. For example, assumptions of an ideal

hardware cache model with inclusion property across hierarchies and an optimal re-

placement property will likely be replaced by software managed memory hierarchies

on extreme-scale systems. Cache-oblivious algorithms also assume computations on

homogenous CPU architectures and an empty cache before and after task execution.

Cache complexity of tasks are analyzed independently of other tasks without any co-

location analysis with the assumption that randomized workstealing does not change

asymptotic cache complexity. As discussed earlier, future extreme-scale systems will

be qualitatively different from these assumptions.

107

5.4 Summary

In this chapter, we have presented methods for controlling locality of compute and

data on shared and distributed memory systems. The HAPGNS model enables user

directed data distribution functions to optimize data layout on distributed systems.

Users can also use the HAPGNS model to take advantage of a distributed dataflow pro-

gramming model using distributed DDFs as a simple extension to the shared-memory

DDF model. Scalability results for the Smith-Waterman benchmark show the practi-

cality of this approach, which offers high programmability. We implemented the HPT

model for Habanero-C to affect spatial locality of computation tasks. We designed

a novel deque resizing algorithm to work with the HPT model. We also presented

a tuning framework for controlling spatial and temporal locality of computations at

the intra-node level. The tuning framework is integrated with the Habanero-C run-

time. Our experimental results with the tuning framework use the Rician denoising

application. We show a performance improvement of 19%-20% over an already par-

allel, tiled (for local caches) and load balanced execution on a fairly small system (12

cores) and a fairly shallow hierarchy (3 level caches - local L1 and L2, socket shared

L3) with today’s data movement costs. We anticipate even better improvements on

tomorrow’s systems with more cores, deeper hierarchies and higher ratios in the costs

of data movement vs computation.

108

Chapter 6

Task Synchronization for Iterative Computation

The Habanero-C dynamic task parallel language has the ability to express fine-grained

parallelism with the help of lightweight tasks. Tasks get executed by worker threads

that are governed by a runtime scheduling algorithm. The runtime scheduler ensures

load-balanced execution by using a work-stealing algorithm. Although the runtime

helps with efficient execution of parallel tasks, every runtime operation is considered

overhead for the application’s real work. This sounds counter-intuitive because users

usually do not notice these overheads relative to the actual amount of work when the

number of runtime operations are far less than the number of operations inside the

tasks. However, when the ratio of runtime operations to actual work operations is no

longer negligible, it could adversely affect the performance of the application. In other

words, application performance can be viewed as being sensitive to task granularity.

If the granularity is too small, it can cause time and space overheads due to the

large number of tasks in the system. In such a scenario, the runtime has to spend

more time scheduling these tasks and require more space storing them. Applications

written with deeply nested parallelism in the structured task parallel model, a smaller

granularity of computation may cause frequent task blocking leading to large runtime

overheads. In the data-flow task model, unbounded queue sizes may cause second

order effects such as non-uniform queue access latencies. If the granularity is too

large, it may cause loss of parallelism and lesser overlaps between computation and

data movement.

109

For iterative computations, tuning for task granularity will be a key process for

scalable performance on extreme-scale systems. Iteration spaces for computations can

very large for scientific applications. While it is possible to express every iteration as

a distinct task, the total number of tasks can very easily reach O(106) and higher for

a typical loop based computation. The runtime overheads for such a scenario would

be prohibitively high. One of the strategies to solve this problem is for the user

to first decompose an application into the finest grain possible, and then gradually

start coarsening until the best granularity is found. This strategy can be likened to

a compiler employing maximal loop distribution followed by a heuristic loop fusion

phase. Without adequate synchronization support, there is a limit to the maximum

granularity that can be achieved through task coarsening. Such a limit would imply

that a task can start execution and proceed to completion with having to synchronize

with others. This limit may prove to be restrictive and so there will be a need

to support inter-task synchronization for increasing task granularity. Based on this

premise, we believe that a critical requirement for scalable dynamic task parallelism

is an efficient synchronization mechanism to support task coordination at different

levels of granularity.

The Habanero-C base language contains the finish construct for structured task

parallel synchronization and the DDF model for representing data-flow task graph

patterns. The finish construct is a collecting synchronization operation for tasks to

signal their completion, while the DDF model supports single-assignment producer-

consumer dependence relation. Neither model supports active task synchronization.

With active synchronization, a task can synchronize with others multiple times at

various points during computation while maintaining the context of execution. The

phaser synchronization model [12], is an efficient technique for representing complex

110

active synchronization patterns among dynamically created tasks. It can support

iterative synchronization in a scalable way. We use the phaser synchronization ap-

proach as the model of choice to targeting synchronization operations when tuning

of task granularity in iterative computations.

In this chapter, we first provide an overview of past work on the Habanero-Java

phaser synchronization model in Section 6.1. We summarize the contributions of

this work in Section 6.2. In Section 6.3, we present the phaser design for shared-

memory programming on multicore tightly coupled compute nodes. We present a

programming models for the Habanero-C dynamic task parallel language. We also

describe a generalized tree-based hierarchical synchronization algorithm for phaser.

We present our experimental results on multicore compute nodes. In Section 6.4, we

describe the phaser design, implementation and hardware optimizations for the Cy-

clops64 manycore architecture. We present our experimental results on this manycore

architecture. In Section 6.5, we present a programming model and implementation

for unified shared and distributed memory collective synchronization. We present

our experimental results using current multicore cluster platforms. We summarize

our work in Section 6.6.

6.1 Past Work on Phaser Synchronization Model

Phasers [12], first introduced in the Habanero-Java multicore programming system,

are synchronization constructs for task parallel programs. The phaser construct uni-

fies collective and point-to-point synchronization between tasks in a single interface,

and are designed for ease of use and safety to help to improve programmer pro-

ductivity in task parallel programming and debugging. The phaser synchronization

model supports dynamic task parallelism by allowing tasks to dynamically regis-

111

ter and deregister with a phaser object. The use of phaser guarantees two safety

properties: deadlock-freedom and phase-ordering. These properties, along with the

generality of its use for dynamic parallelism, distinguish phasers from other synchro-

nization constructs such as barriers [15, 17, 36], counting semaphores [107] and X10

clocks [5, 108]. A subset of phaser capability has been added to Java 7 libraries [109],

and also can be added to other programming models such as OpenMP [37] and Intel’s

Thread Building Blocks [70].

6.1.1 Phaser Programming Model in HJ

SIGNAL_WAIT

WAIT_ONLY SIGNAL_ONLY

SIGNAL_WAIT_NEXT

(SINGLE)

Figure 6.1 : Phaser Mode Lattice

T1<SIG> T2<SIG_WAIT> T3<SIG_WAIT> T4<WAIT>

signal

wait

Figure 6.2 : Semantics of synchronization operation

The phaser synchronization model provides each task the option of registering with

a phaser in one of four modes: signal-wait-single, signal-wait, signal-only, or

112

wait-only. For producer-consumer synchronization, the producer should register in

signal-only mode and the consumer should register in wait-only mode. For barrier

synchronization all tasks should register in signal-wait mode. In addition, a next

statement for phasers can optionally include a single statement which is guaranteed to

be executed exactly once during a phase transition. The registration mode defines the

capabilities of the task with respect to the phaser, and the semantics of synchroniza-

tion operation on phaser depends on the mode. There is a natural lattice ordering of

the capabilities as shown in Figure 6.1. Figure 6.2 shows a synchronization operation

on a phaser by four tasks, T1 with signal-only, T2 and T3 with signal-wait, and

T4 with wait-only mode. The phaser operations that can be performed by a task,

Ti, are defined as follows.

• new: When Ti performs “ph = new phaser(mode)” statement, it results in the

creation of a new phaser, ph, such that Ti is registered with ph according to

mode. If mode is omitted, the default mode assumed is signal-wait-single.

At this point, Ti is the only task registered on ph.

There is another phaser constructor “phaser(mode, numTiers,

numDegree)” to create a hierarchical phaser, which support tree-based

barrier synchronization with better scalability than normal phasers. In

addition to mode, the constructor takes two tunable parameters, numTiers

is the number of tiers of the tree and numDegree represents the number of

children per tree node. In HJ, tasks can register on a hierarchical phaser

with the signal-only mode. The following operations for registration,

de-registration and synchronization are available on both normal flat-level

phaser and hierarchical phaser in the same manner.

113

• phased async: When Ti performs

“async phased (ph1〈mode1〉, ph2〈mode2〉, . . .) Tj” statement, it creates a child

task Tj registered with a list of phasers with specified modes. If 〈modek〉 is

omitted, the same mode as Ti is assumed by default. The following constraints

are imposed on the transmission of phasers:

1. Capability rule: Ti can register Tj on phaser ph iff Ti is also registered on

ph, and the capability possessed by Ti on ph must be same or higher than

the transmitted capability to Tj in the lattice ordering. The capability rule

is imposed to avoid race conditions on phaser operations.

2. IEF scope rule: Ti can register Tj on ph iff the phaser creation instruc-

tion (new) for ph has the same Immediately Enclosing Finish as the task

creation instruction (async) of Tj. The IEF rule is imposed to avoid a

potential deadlock between the end-finish synchronization and phaser

synchronizations.

An attempt to transmit a phaser that does not obey the above two rules will

result in a PhaserException being thrown at runtime. We also support the

“async phased Tj” syntax to indicate by default that Ti is transmitting all its

capabilities on all phasers that satisfy the IEF scope rule to Tj.

• drop: There are three ways to de-register from phasers.

1. Task termination. When Ti terminates execution, it de-registers from

all phasers.

2. End-finish. When Ti is the parent task of finish statement F and executes

the end-finish instruction, it completely de-registers from each phaser ph

114

Operation Registration Mode Action

next signal-wait-single / signal-wait signal + wait

signal-only signal

wait-only wait

next 〈stmt〉 signal-wait-single signal + wait + single

(next w/ signal-wait error

single stmt) signal-only error

wait-only error

signal signal-wait-single / signal-wait signal ph

signal-only signal ph

wait-only no-op

wait signal-wait-single / signal-wait wait ph

signal-only no-op

wait-only wait ph

Table 6.1 : Semantics of phaser operations as a function of registration mode on ph

if the IEF for ph’s creation is F .

3. Phaser-specific drop. Ti can perform “ph.drop()” to de-register from

ph anywhere in the IEF scope of ph’s creation.

• next / signal / wait: The next operation has the effect of advancing each

phaser on which the task is registered to its next phase, thereby synchronizing

with all tasks registered on a common phaser. A next operation is equivalent

to a signal operation followed by a wait operation 1.

1Phaser’s wait operation is different from Java Object.wait operation

115

– signal operation. The task signals all phasers that it is registered on with

signal capability (signal-only, signal-wait or signal-wait-single

mode). A phaser advances to its next phase after all registered tasks signal

the phaser Phaser-specific operation, ph.signal(), is also supported.

– wait operation. The task is blocked until all phasers that it is registered

on with wait capability (wait-only, signal-wait or signal-wait-single

mode) advance to their next phase. Phaser-specific operation, ph.wait(),

is also supported.

Table 6.1 shows the semantics of phaser operations as a function of registration

mode on ph. When a task with both signal and wait capabilities on ph per-

forms multiple signal operations on ph without performing a wait operation,

only the first signal operation is valid and the others become no-op. This

semantics intends to reduce the complexity of supporting fuzzy [110] or split-

phase [111] barrier that allows local work to be performed between the signal

and wait/next operations. On the other hand, multiple wait operations by

such a task result in an error (PhaserException at runtime) so as to avoid

deadlock.

• next with single statement: The next 〈stmt〉 operation has the semantics

of a next statement as defined above, with the extension of executing stmt

as a single statement which is guaranteed to be executed exactly once during

a phase transition. Here, 〈stmt〉 can contain multiple statements and are not

allowed to perform phaser operations. This operation is only permitted if Ti is

registered in signal-wait-single mode on the phaser (see Table 6.1). Further,

we require all other tasks registered with the phaser in signal-wait-single

116

mode to execute the same static next 〈stmt〉 statements. These constraints are

imposed to ensure the integrity of the single statement [81].

At each wait operation, a master task is selected from the tasks with wait capa-

bility per phaser. The master task of ph handles the process to advance ph to next

phase, and executes the single statement of next 〈stmt〉 operation on ph. The lattice

ordering in registration modes is used as priority to select master task so that a task

with signal-wait-single mode always becomes the master. In a typical implemen-

tation, the earliest task to perform wait operation becomes the master if multiple

tasks have same priority. Therefore, different task can be the master task at each

wait operation.

6.1.2 Hierarchical Phasers for Tree-based Barriers in HJ

In this section we briefly show the advantage of tree-based barrier synchronization

and details of the programming interface. As shown in Figure 6.3, a phaser barrier

synchronization is divided into two operations, gather and broadcast. In the gather

operation, a master task waits for all signals from worker tasks sequentially, and the

waiting time can be proportional to the number of workers. While the single master

approach provides an effective solution for modest levels of parallelism, it quickly

becomes a scalability bottleneck as the number of threads increases. Thus, gather

operations are the major scalability bottleneck in single-level phaser operations. On

the other hand, the broadcast operation is more scalable because each worker just

waits for a broadcast signal from the master. The tree-based hierarchical barrier

synchronization employs multiple sub-masters so that the gather operation in the

same level (tier) can be executed in parallel by sub-masters (Figure 6.4). Furthermore,

the hierarchical structure is amenable to the natural hierarchy in the hardware; each

117

sub-master can naturally leverage data locality among workers in its sub-group.

T1

Master
Receive signals sequentially

T2 T3 T4 T5 T6 T7 T8

sig T1
sig T2
sig T3
sig T4
sig T5
sig T6
sig T7
sig T8

gather

broadcast

Figure 6.3 : Single-level phaser with single master

As shown in Section 6.1.1, the constructor to allocate a hierarchical phaser takes

the number of tiers and degree of the tree as parameters. The numTiers parameter

(= T) specifies the number of tiers to be used by the runtime system’s tree-based sub-

phaser structure, and numDegree (= D) is the maximum number of child sub-phasers

that can be created on a parent sub-phaser. A hierarchical phaser with numTiers=1

is equivalent to a single-level phaser. The leaf of a sub-phaser tree has no child sub-

phasers, and deals with the tasks that are assigned to the leaf. If there is no tasks on a

leaf sub-phaser, the leaf is inactive and does not attend tree-based barriers. Similarly

a non-leaf sub-phaser that has no active child sub-phasers is also inactive. Each active

leaf sub-phaser must contain at least one task with wait capability so that it can be

the master task of the leaf sub-phaser. However, programmers have no control over

118

T1

Sub-masters in the same tier work in parallel to gather signals

T2 T3 T4 T5 T6 T7 T8

sig A1
sig A2

sig A3
sig A4

sig A5
sig A6

sig A7
sig A8

gather

broadcast

Figure 6.4 : Hierarchical phaser with sub-masters

task assignment to leaf sub-phasers and therefore registration in signal-only mode

is not allowed for a hierarchical phaser.

Although there is no limit on the number of tasks registered on a phaser, the

runtime may run into some scalability bottlenecks if the number exceeds DT , since

that implies that the synchronizations and reductions will need to be serialized within

“sub-masters” at the leaves of the phaser tree. Figure 6.4 is the case of numTiers

= 3 and numDegree = 2, and the scalability issue may occur when tasks more than

23 = 8. As with flat phasers, hierarchical phasers support dynamic task parallelism

so as to allow the set of tasks synchronized on a phaser to vary dynamically.

119

struct Sync {
 int sigPhase;
 int waitPhase;
 int mode;
 int isDropped;
...}
struct phaser {
 int masterCounter;
 int masterWaitPhase;
 struct Sync* sigList;
...}
struct task {
 struct Sync* sync_list;
...}

sig

T1

Ph

sig

T2

sig

T3

sig

T4

sig

T5

sig

T6

sig

T7

sig

T8
: Phaser List access
: Task access

// Signal by a worker (increment sigPhase)
Sync* mySig = getMySigSync();
mySig->sigPhase++;

// Master waits for all workers’ signals
Sync* s = ph->sigList;
while(s != NULL)
 while (s->isDropped == 0 &&
 s->sigPhase <= masterWaitPhase);
}
masterWaitPhase++;

Figure 6.5 : Data structures for flat phaser

6.1.3 Phaser Implementation in HJ

Figure 6.5 shows semantics and data structures for the gather operation of the single-

level barrier. Each task registered on a phaser has a Sync object corresponding

to the phaser, that contains the registration mode and the current signal and wait

phase. These Sync objects are also included in List sigList of the phaser, a list

of all signalers. All tasks registered on the phaser send a signal to the master task

by incrementing its sigPhase counter, and the master task waits for all sigPhase

counters to be incremented by busy-wait loop. A registered task can also spawn

another task, or child task, and register the child on the phaser. A new Sync object

120

T1

Ph

T2 T3 T4 T5 T6 T7 T8

: List access
: Task access

: Tree accessTier 0

Tier 1

Tier 2

struct SubPhaser {
 Sync* sigList; // Only leaf sub-phaser contains
 int masterSigPhase; // Signal for the higher tier
 int masterWaitPhase; // Wait for the lower tier
 struct SubPhaser* parent; // Parent in the tree
...}
struct phaser {
 int masterPhase; // Signal to broadcast
...}

Figure 6.6 : Data structures for tree phaser

corresponding to the child task is appended to sigList, and the child task attends

to synchronizations on the phaser. Busy-wait loops in phaser runtime have timeout

periods that can be specified as a runtime parameter. When a busy-wait loop times

out, the task sleeps and the hardware thread switches to another task. Once every

signaler has signaled, the master wakes up all suspended workers serially.

We have seen that the hierarchical phaser employs a tree of sub-masters, instead of

a single master. When an task spawns a child task, the child is registered on the same

leaf sub-phaser as its parent activity until the number of activities on the leaf reaches

numDegree. If the leaf is full, the child activity is registered on another leaf sub-phaser.

121

This process continues so long as the total number of levels does not exceed numTiers.

Since this process needs additional atomic accesses, the initialization (registration)

overhead of hierarchical phasers is generally larger than flat phasers. Figure 6.6

shows semantics and data structures for the gather operation of the tree-based barrier.

Every sub-phaser has two counters that track the current signal phase and wait phase,

named masterSigPhase and masterWaitPhase. SubPhaser contains List sigList,

sigPhase and masterWaitPhase counters. The sigList of a leaf sub-phaser includes

Sig objects for tasks that are assigned to the leaf sub-phaser. phaser class has

a two dimensional SubPhaser array and all tasks can access the hierarchical sub-

phasers so that any eligible task can be a master task to advance the sub-phaser.

In the gather operation, all sub-masters on leaf sub-phasers check their sigList

and wait for the signals from other tasks in parallel, and increment their sigPhase

counters after waiting the signals. A sub-master on non-leaf sub-phaser waits for

the sigPhase increments of its child sub-phasers and also increments its sigPhase.

Finally, the global master receives the signal from the top level sub-phasers and

finishes the hierarchical gather operation. The phaser has a global counter counter

called masterPhase. After the gather operation completes, the broadcast is carried

out to all waiters by incrementing the masterPhase counter.

6.2 Research Contributions

In this work, we present generalized scalable designs for high-performance synchro-

nization with the phaser model. We show applicability for extreme-scale systems

with implementations for multicore and manycore architectures, and across compute

nodes. We also preserve the simple phaser programming model to make applications

portable across a wide range of systems. The contributions of this thesis in the phaser

122

synchronization model can be summarized as:

• A generalized tree-based phaser synchronization algorithm.

• The design and implementation of the multicore phaser synchronization model

for dynamic task parallelism in Habanero-C.

• The design and implementation of the manycore phaser synchronization model

with hardware optimizations for the Cyclops64 manycore processor.

• The design and implementation of a hybrid phaser synchronization model for

unified shared and distributed memory collective synchronization using the HC-

COMM runtime.

• Support for phaser accumulators in both intra-node and hybrid phaser imple-

mentations.

6.3 Phasers for Multicore Synchronization

In this section, we shall look at the phaser design for multicore architectures. This

model integrates phaser into Habanero-C, a dynamic task parallel language. This

language integration is similar to the Habanero-Java model. Next, we look at some

of the details of the phaser data structure in Section 6.3.2. Finally, we describe the

details of a novel algorithm for tree-based phaser synchronization in Section 6.3.3 that

overcomes some of the limitations of the HJ model.

6.3.1 Programming Model for Habanero-C

The phaser synchronization model in Habanero-C follows closely to Habanero-Java

model described in Section 6.1.1. In Habanero-C, tasks can register on a phaser

123

in one of the 3 modes: SIGNAL WAIT MODE, SIGNAL ONLY MODE, and WAIT ONLY MODE.

The phaser mode signifies its capabilities when performing synchronization operations.

The Habanero-C language interface for phasers includes:

• Creation: PHASER CREATE(mode) creates a phaser object and registers the calling

task on the phaser with the specified mode.

• Registration: A child task can register on a phaser object that was cre-

ated by the parent using the phased clause in the async statement. async

phased 〈stmt〉 registers the async with all phasers created by the par-

ent in the immediate enclosing finish scope and asynchronously execute

〈stmt〉. async phased SIGNAL ONLY(ph1, ...) WAIT ONLY(ph2, ...)

SIGNAL WAIT(ph3, ...) 〈stmt〉 registers an async on specific phasers with

specific modes. The parent should be registered on all the phasers in modes that

are greater than or equal to the modes of the child as shown in Figure 6.1.

– SIGNAL WAIT > SIGNAL ONLY

– SIGNAL WAIT > WAIT ONLY

– SIGNAL ONLY = WAIT ONLY

• Synchronization: The next statement executed by a task will synchronize the

task on all the phasers that it is registered on.

Figure 6.7 shows an example of using phasers to implement a barrier among

multiple asynchronously created tasks. The async statement in line 4 and the j-for

loop create ntasks child tasks, each registering with the phaser created in line 2 in the

same mode as in the master task. The next statement in line 8 is the actual barrier

wait; each task waits until all tasks arrive at this point in each iteration of the i-for

124

1: finish {
2: new_phaser(SIGNAL_WAIT);
3: for (int j=0; j<ntasks; j++)
4: async phased IN(j) {
5: for (int i=0; i<innerreps; i++) {
6: delay(delaylength);
7: printf("Task %d at step %d!\n", j, i);
8: next; }
9: } }

Figure 6.7 : Barrier Example

loop. The first next operation of each task causes itself to wait for the master task

to do next operation or to deregister. When the master task reaches the end of the

finish scope, it deregisters from the phaser so all child tasks continue and synchronize

by themselves in each iteration.

6.3.2 Phaser Data Structure

The implementation of hierarchical phasers in Habanero-C is a completely new design

that is optimized to take advantage of the runtime’s memory management. In this

phaser model, the constructor for a hierarchical phaser differs from the HJ version

shown in Section 6.1.1 by removing the numTiers parameter. All other the program-

ming constructs remain unchanged between flat phasers and hierarchical phasers.

Figure 6.8 shows the hierarchical phaser design for Habanero-C. There are three

main components to the phaser design: the basic phaser data structure, the tree of

sub-phasers and the phaserSync objects. The subphaser tree is built dynamically at

runtime when tasks register on the phaser in a signaling mode. These tasks form

attach themselves to the leaf nodes of the subphaser tree. Tasks registering with

wait-only mode do not get attached to the tree. During synchronization, signaling

tasks increment their local phase counter to indicate a signal. Tasks registered on

125

PHASER

-  phase
-  root

-  leaf

-  landing_pad

-  unfixed_sph

S2	

S5	

S3	 S1	 S6	

S4	

S0	

T0	 T1	 T2	 T3	 T4	 T5	 T6	 T7	

SW S SW SW S S S SW

T0	 T2	

T3	

T7	

T0	 T1	 T2	 T3	 T4	 T5	 T6	 T7	

S3	 S4	 S5	

SUBPHASER
-  subphase
-  submaster
-  fixedmaster

Figure 6.8 : Generalized Phaser Tree Data Structure (Degree = 2)

the phaser with a wait mode compete to become masters of the subphaser nodes in

the tree. Let us call a master of a subphaser to be a submaster. It is the submas-

ter’s responsibility to gather the signals from the children. For leaf subphaser nodes,

the children are the signaling tasks, while for internal subphaser nodes, the children

would subphaser nodes as well. After a submaster gathers signals from its children,

it increments the phase of the subphaser node, thereby indicating a signal from that

subphaser node to the parent subphaser node. This way the signals from the tree

propagate from the leaves to the root. When the root has gathered signals from its

children, it indicates the completion of all signals in that synchronization phase. Fol-

lowing this, the master at the root will increment the overall phase of the phaser to

indicate the start of the next phase.

126

A major performance overhead is the competition amongst waiters to become

submasters. Competition is resolved through an atomic compare-and-swap (CAS)

operation, which is typically more expensive than non-atomic operations. Considering

n signalers at the leaves of a complete binary subphaser tree with n−1 internal nodes,

imply at least n − 1 CAS operations for every synchronization phase. This can be

considered as large overhead. To reduce this overhead, we can assign a fixed waiter

task for a subphaser node. In case, that task drops out of the phaser, the subphaser

node will become unfixed and will need to be reassigned to another waiter. This

dynamic fixing of the subphaser nodes is handled by our algorithm.

Most of the basic phaser data structure derives from the hierarchical phaser design

for Habanero-Java 6.1.2. Figure 6.8 shows some of the important member fields of

the phaser data structure. There are a few other variables that the runtime main-

tains which we are going to elaborate on them while describing the algorithm in

Section 6.3.3.

phase This counter, as the name suggests, tracks the current phase of this synchro-

nization object.

master This counter helps decide whether the phaser has already selected a master

of this phase. As mentioned before, it is the phaser master’s responsibility to

finally broadcast the phase increment.

leaf This variable always points to the very first subphaser structure that gets created.

It gets set once and never changes after it is set.

root This variable points to the root of the subphaser tree. The root can change

dynamically as the tree grows when more tasks register on the phaser. Currently

127

the implementation does not shrink the overall tree when tasks drop. Instead

whole subtrees of the phaser tree have the option of being deactivated.

landing pad This variable holds a list of signalers who have just registered on the

phaser and have not yet completed one phase transition operation. They are

taken off the list by the root master before broadcasting the phaser transition.

Tasks are added to the list in ascending order of the unique registration identi-

fiers. A task blocks until all lower identifiers are have been added to the list.

unfixed sph This variable holds a list of subphaser objects that do not have a fixed

master assigned.

Hierarchical phasers consists of a tree of subphasers inside the main phaser data

structure. The subphaser tree node’s degree is set as a parameter when the phaser is

created. The leaf nodes of the tree contain degree number of tasks while the internal

nodes contain degree number of subphasers. In Figure 6.8, the subphaser structures

are in the circles denoted by Si. Some of the important components of the subphaser

are:

subphase This is for the subphaser to gather signals from the children and propagate

a signal to the parent.

submaster This variable helps to decide the master who gathers the signals of its

children in case the master has not been fixed.

fixedwaiter This variable points to the active task which is fixed to be master of

the subphaser for every synchronization phase.

The phaserSync objects act as an interface between the task and the phaser object.

When a task registers on a phaser, it creates the appropriate phaserSync objects

128

according to the mode of registration. In Figure 6.8, the phaserSync objects are in the

rectangles denoted by Tk. For all signal modes such as signal-only or signal-wait,

a sigSync object is created, while for all wait modes, a waitSync is created. Both

sigSync and waitSync objects are maintained by the task. References to registered

sigSync objects are also maintained by the subphaser tree leaves. Every sigSync object

maintains a phase variable to notify the phaser master that the signal has been done.

Every waitSync object also maintains a phase variable which helps in busy waiting

on the phaser broadcast. The sigSync maintains a isActive boolean field to notify the

phaser master in case it has dropped off. If a task is a fixed master on a subphaser,

then the waitSync object maintains a reference to that subphaser with the fixed sub

phaser variable.

6.3.3 A Generalized Tree-based Phaser Synchronization Algorithm

Past work on hierarchical phaser synchronization [112] suffers from two limitations.

Firstly, there is no support for tasks with signal-only registration modes. With such

a restriction, it is not possible to express point-to-point synchronization patterns.

Secondly, the phaser tree size is fixed at the time of phaser creation. The user has

to specify the maximum allowed height (T) and degree (D) of the tree as part of

constructor. This implies that the user should have prior knowledge of the maximum

number of tasks (DT) that can register on a phaser, which is a restriction for dynamic

task parallel computation on extreme-scale systems. In this section, we describe a

new generalized tree-based phaser synchronization algorithm aiming to overcome these

limitations.

The phaser synchronization model can be broadly classified into three distinct

parts during the lifetime of a task associated with a phaser object. First, the reg-

129

istration process associates the task and the phaser object. Following registration

a task begins the active synchronization operations. Finally, the de-registration or

drop step disassociates the task from any further participation in the phaser object’s

activities.

Registration Phase

There are two phaser registration scenarios. First, when a task creates a phaser, that

task is automatically registered on the phaser as part of the phaser creation function.

Second, when a task creates a child task, the parent has the option of registering

the child on the phaser objects that the parent is registered on and shares the same

immediately enclosing finish scope. In either case, the registration process associates

the phaser object with the phaserSync objects depending on the registration mode. A

phaserSync object, as described in Section 6.3.2, acts as the interface between a task

and the phaser object.

Algorithm 2: PhaserRegistration

Data: phaser ph, mode m

Result: sync objects s and w

if m 6= signal only then

w ←− initializeWaitSync();

end

if m 6= wait only then

s←− initializeSigSync();

InsertSigIntoPhaserTree(ph, s);

end

130

Algorithm 2 shows the pseudocode for the registration function. If the registra-

tion mode has a wait component, then a waitSync object is created and initialized.

Similarly, if the registration mode has a signal component, then a sigSync object is

created and initialized. The function returns these objects to the caller where they

would added to the frame of the task being registered. If a sigSync is created, this

object is added to the phaser tree, which consists of a tree of subphaser nodes where

the leaf subphasers have sigSync objects attached.

Algorithm 3 shows the function pseudocode for adding a sigSync to the phaser

tree. The function first assigns a unique identifier to the new task, using an atomic

increment of a shared counter, sigCounter. This id tells us the insertion position at

the leaf level, the leaf subphaser number and the offset into that subphaser based on

the degree of the tree. If the offset is 0, then the task is responsible for setting the

phaser tree appropriately. But for a non-zero offset, the insertion busy waits until the

subphaser shows up on the tree. The task which gets the responsibility of setting up

the subphaser, also busy waits until all the previous leaves have been setup. However,

the tree setup function can be concurrent with non-zero offset insertions in previous

leaves. The task starts setting up the tree by creating the leaf subphaser and adding

more sub-phasers to the tree if required in order to complete the tree. Once the tree

has been setup, the leafCounter variable is incremented so that other tasks waiting

on this leaf subphaser can proceed.

The tree insertion routine also performs two other functions. First, if this task

has a wait component, then, it may be a good choice to become a fixed master

on a subphaser in the tree. Fixed masters have the advantage of not employing an

atomic operation to become a master dynamically during a synchronization operation.

However, we allow only tasks registered in signal-wait mode to become fixed masters

131

Algorithm 3: InsertSigIntoPhaserTree

Input: phaser ph, sig sync s

sigId←− getUniqueSigId(ph.sigCounter);

sphId←− sigId/ph.degree; /* leaf sub-phaser */

sphOff ←− sigId%ph.degree; /* offset into leaf sub-phaser */

if sphOff = 0 then

sph←− subPhaserCreate();

if sphId = 0 then

ph.leaf ←− sph;

else

busy wait until ph.leafCounter reaches sphId;

append sph to the list of leaves and setup the rest of the tree;

end

sph.sigArray[0]←− s;

atomic increment of ph.leafCounter

else

busy wait until ph.leafCounter reaches sphId + 1;

traverse list of leaves to reach leaf with id sphId;

sph.sigArray[sphOff]←− s;

end

s.leaf ←− sph;

if isSigWait(s) then

if FixSubPhaser(s) = false then

AddSubPhaserToUnfixedList(sph);

end

end

InsertToLandingPad(ph, s);

132

Algorithm 4: FixSubPhaser

Input: sig sync s

Output: True if a subphaser master gets fixed. False otherwise.

sph←− s.leaf ;

while sph do

if trySynchronizedMasterF ix(sph, s) = true then

s.wait.fixedsph←− sph;

return true

end

sph←− sph.parent;

end

return false

so that the synchronization phase does not suffer from any delays resulting from

wait-only tasks. Algorithm 4 shows the pseudocode for this function. The current

algorithm fixes a task as master on a subphaser on the path from the leaf to root

only to benefit from locality of the gather operation. If the task that is performing a

gather operation shares a level of cache with one who needs to signal, then the busy

wait basically spins on a cache line getting dirty without going through the system

bus. If such a scenario comes about at runtime, it will boost performance and greatly

reduces unnecessary memory traffic. We do not try to reshape or rebalance the tree

with respect to fixed masters. Fixed masters will depend on dynamic registration

order of signal-wait tasks. In the worst case, a fixed master may inhibit another

signal-wait task in its subtree from becoming a fixed master, and may end up

gathering signals from a sibling subtree as well. The second function of the registration

133

phase adds the sigSync object to a list on the phaser known as the landing pad. The

landing pad ensures that there are no racy registrations when the tree root master

gathers all signals. A common racy scenario is when one task is waiting at the root of

the tree while another task is creating a child whose registration would add an extra

level to the tree. As soon as the registration is done, and the parent signals on the

tree, the task at the root being unaware of the new registration would erroneously

conclude that all tasks have signaled. In fact, the root itself has now changed from

before. The landing pad along with a dynamic root check ensures that this situation

is averted. This is one of the critical design features for supporting all modes of

registration on the phaser tree.

Synchronization Phase

This part of the algorithm deals with the phaser synchronization operation called

next. The next operation comprises of the signal and wait functions. If a task’s

registration mode is signal-only, then a next perform only the signal. Similarly

when the task is in wait-only mode, the next does only the wait. In all other modes,

both signal and wait are performed.

Algorithm 5 shows the pseudocode for the signal operation. In order to signal,

the task increments the phase counter on the sigSync object. The checkphase counter

keeps track of early signal operations done by the task. If the checkphase lags behind

the phase, then a signal done through a next become a no-op. Additionally this

function checks if there is any requirement for a traversal of the tree to fix this

task as the master of an unfixed subphaser. The check is done with one compare

operation and so it does not add much overhead for a regular next when the check

fails. However, when the condition succeeds, then the task has to check if it can

134

Algorithm 5: PhaserSignal

Input: sig sync s

if s.phase = s.checkphase then

if checkUnfixedSubPhasers() = true then

FixSubPhaser(s);

end

s.phase + +;

end

s.checkphase + +;

become the master of an unfixed subphaser. This requirement of this dynamic fixing

may arise when a task that was previously a fixed master on a subphaser drops from

the phaser, and in the process unfixes the subphaser.

Algorithm 6 shows the wait operation. In this function, the task first checks if it

is the fixed master of a subphaser, and if that fact is true, then it proceeds to perform

a wait operation on that subphaser. This wait operation is shown by the function

doWaitTree in Algorithm 7. But, if the task is not a fixed master of any subphaser,

it tries to become the phaser master. The phaser master has the responsibility of

ensuring all the tree signals have arrived before broadcasting the phase change to all

waiters. This functionality is shown in the doWaitPhaser function in Algorithm 9

and is explained later.

The doWaitTree function ensures that the master of a subphaser waits for all

signals in it’s subtree followed by waiting for the parent subphaser’s phase change.

The master first checks if the subphaser is a leaf, and if so, it gathers the signals from

the sigSync objects attached to the leaf subphaser. If the subphaser is not a leaf, then

135

Algorithm 6: PhaserWait

Input: phaser ph, wait sync w

if w.fixedsph 6= ∅ then

doWaitTree(w,w.fixedsph, true);

end

while w.phase ≥ ph.phase do

if ph.master = 0 then

if ph.fixedmaster = w then

doWaitPhaser(ph, w);

else

busy wait for either ph.phase or ph.master to change;

end

else

if isPhaserUnfixedMaster(ph, w) = true then

doWaitPhaser(ph, w);

else

busy wait for either ph.phase to change;

end

end

end

136

Algorithm 7: doWaitTree

Input: wait sync w, subphaser sph, boolean checkparent

if isLeaf(sph) then

busy wait on array of signaler tasks;

else

foreach child subphaser c do doWaitNode(w, c, false);

end

sph.phase + +;

if sph.parent 6= ∅ & checkparent = true then

doWaitNode(w, sph.parent, true);

end

Algorithm 8: doWaitNode

Input: wait sync w, subphaser sph, boolean checkparent

while wait.phase ≥ sph.phase do

if sph.fixedwaiter 6= ∅ then

busy wait for sph.phase to change or sph.fixedwaiter be inactive;

else

if isSubPhaserUnfixedMaster(sph, w) = true then

doWaitTree(w, sph, checkparent);

else

busy wait for either sph.phase to change;

end

end

end

137

Algorithm 9: doWaitPhaser

Input: phaser ph, wait sync w

foreach element s in ph.landingpad do busy wait until s.phase > ph.phase;

r ←− ∅;

while r 6= ph.root do

r ←− ph.root;

doWaitNode(w, ph.root, 0);

end

Remove sub phasers with fixed masters from unfixed list;

ph.phase + +;

it gathers signals from children subphasers by calling the function doWaitNode shown

in Algorithm 8. Once all the signals have arrived from the children, the subphaser’s

phase change is signaled by incrementing the subphase variable.

The doWaitNode function checks if the subphaser already a fixed master, and if

so, then waits for the fixed master to signal the phase change on that subphaser.

If the function detects that the fixed master has dropped, or if there was no fixed

master in the first place, then it tries to become a temporary master by performing

an atomic compare- and- swap on the submaster variable. On succeeding it performs

a doWaitTree function on that subphaser. On failure, it waits for the subphaser to

signal a phase change.

Now, the doWaitTree function takes a boolean argument called checkparent. If the

argument is true, then it means that the function cannot complete until the parent has

signaled a phase change. The rationale is that even if a fixed master of a subphaser has

signaled it phase change, the only way to ensure progress is to ensure that your parent

138

has gathered all signals in its subtree. So, the fixed master calls a doWaitNode on the

parent. Consider the scenario when there is only one task registered in signal-wait

mode on the phaser and all others are in signal-only mode. Since, only tasks with

signal-wait can become fixed masters, this task would basically have to gather the

signals from all others. This ensured by the algorithm through checking the parent

after collecting signals from its subtree.

The doWaitPhaser function is called by the task which is the global master of

this phaser. The global master may also have a task fixed as its master in order to

reduce the atomics required to be temporary master. This function first waits for all

signals from the landing pad list of tasks. Once the signals have arrived, the tasks are

removed from the landing pad. Next, the global master performs a doWaitNode on

the root of the phaser tree. Doing this ensures that the global master has collected

all the signals in the subtree under the root. Consider the scenario when all the tasks

registered on the phaser tree are in signal-only mode. In such a case, the global

master will ensure that it gathers all their signals through the doWaitNode function.

Now, it might be the case during the gather of signals though the root, more tasks

get registered on the phaser and the tree grows new levels. This would imply that the

root has changed from the time the global master started the doWaitNode function.

As a result, the algorithm checks for this change and repeats the process if there

was indeed a change to the root. After gathering all signals from a stabilized root,

the global master removes all subphasers from the unfixed sph list which have found

new fixed masters. The final step of this function broadcasts the phase change in the

phaser by incrementing the phase variable.

139

Algorithm 10: PhaserDropSig

Input: phaser ph, sig sync s

if s.wait 6= ∅ then

if s.wait.fixedsph 6= ∅ then

s.wait.fixedsph.fixedmaster ←− ∅;

Add s.wait.fixedsph to ph.unfixedsubphasers list;

end

if ph.fixedmaster = s.wait then

ph.fixedmaster ←− ∅;

end

end

s.isActive←− 0

De-registration Phase

The de-registration phase is to drop a task from the phaser. As mentioned earlier in

the HJ phaser model, tasks are dropped either on completion or on an explicit drop

call. The task simply has to make its sigSync object inactive. Additionally, if the

task was a fixed master on a subphaser then it has to make that subphaser available

for other tasks to become the fixed master. This is done by clearing the fixedmaster

variable on the subphaser and also adding the subphaser to the unfixed sph list.

In this section, we have seen that the algorithm can handle all kinds of registration

modes on a phaser tree and improves performance by managing fixed masters for the

subphaser tree. Furthermore, the synchronization algorithm also takes advantage of

locality benefits in a fully dynamic task parallel environment. The salient points of

this algorithm can be summarized as follows.

140

• Supports task registration for all the modes.

• Supports an unlimited number of tasks participating in the tree synchronization.

• Dynamic management of fixed masters in the phaser tree thereby greatly re-

ducing system bus contention.

• Locality aware fixed master assignment for improving busy-wait performance.

6.3.4 Results

In our multicore experiments, we compare phaser performance for barrier synchro-

nization against OpenMP barrier implementations on various platforms. The barrier

microbenchmark was based on the EPCC OpenMP syncbench test that was developed

for evaluating OpenMP barrier overhead [113]. The benchmark runs a loop with a

barrier call in its body. This loop is run for a very large number of iterations. The

total running time of the loop is divided by number of iterations to get the average

time per iteration. Similar to this method, a reference loop is also run which does

not contain the barrier call in its body. The average iteration time of the reference

loop is then subtracted from the original loop iteration time to produce the barrier

overhead time. This constitutes one sample. After many such samples are collected,

the minimum, maximum and average times are obtained and displayed along with

the standard deviation. In these results, we present the minimum of all the barrier

overhead samples. For OpenMP barrier times, we collected results with OMP WAIT

POLICY set to ACTIVE as well as the default configuration. We report the best times

achieved from either configuration.

Figure 6.9 compares barrier performance of Phaser against OpenMP implemen-

tation by the Intel icc and GCC compilers. The execution platform was an Intel

141

2	 4	 6	 8	 12	

Phaser	 0.25	 0.30	 0.32	 0.66	 0.83	
icc	 OpenMP	 0.21	 0.29	 0.39	 0.65	 0.90	
gcc	 OpenMP	 0.16	 0.26	 0.44	 0.93	 1.23	

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

1.20	

1.40	

Ti
m
e	
(u
s)
	

Processors	

Intra-‐Node	 Barrier	 Synchroniza:on	

Phaser	 icc	 OpenMP	 gcc	 OpenMP	

Figure 6.9 : Barrier Synchronization on x86 node

Westmere node with 12 processor cores running at 2.83 GHz. We used Intel icc

compiler version 12.0.4 and GCC compiler version 4.4.6 and for each case we bound

the threads to cores at runtime. The Intel OpenMP implementation by default used

the hyper algorithm for the barrier operation, a hypercube-embedded tree gather and

release algorithm. Two other barrier implementations, namely the linear and tree al-

gorithms, were also tested by setting the environment variable KMP PLAIN BARRIER

PATTERN, and the best times are reported. The GCC OpenMP implementation used

a counting barrier implementation. The results show that phaser outperforms both

icc and GCC as we scale up to 12 cores.

142

0.307	 0.503	
0.763	

0.903	 1.123	

2.198	
3.643	

0.075	

0.117	

0.399	
0.469	

0.734	
2.087	

3.530	

0.020	

0.200	

2.000	

20.000	

2	 4	 8	 16	 32	 64	 128	

Ti
m
e	
(u
s)
	

Threads	

Barrier	 Benchmark	 (IBM	 Power7	 32	 core	 SMT4)	

XLC	 OpenMP	 Phaser-‐D2	 Phaser-‐D4	 Phaser-‐D8	

Phaser-‐D16	 Phaser-‐D32	 Phaser-‐D64	 Phaser-‐D128	

Figure 6.10 : Barrier Synchronization on Power7 node

In Figure 6.10, we compare phaser barrier performance on the IBM Power7 plat-

form which provide 128 hardware threads on 32 cores in SMT4 mode. We mea-

sure performance for different phaser tree degrees and compare against IBM XLC

OpenMP barrier performance. The XLC OpenMP configuration is set to active spin-

ning (XLSMPOPTS = SPINS = 0 : Y IELDS = 0 : STARTPROC = 0 :

STRIDE = 1). We vary the number of threads synchronizing on the barrier from

2 to 128. We see that in each case, there exists a phaser tree configuration that

outperforms the XLC OpenMP barrier performance.

We have also used the dual-CPU Niagara T2 machine for our evaluation. In this

143

2	 4	 8	 16	 32	 64	 128	

HC	 So,ware	 Barrier-‐Tree	 0.95	 1.17	 1.43	 1.67	 2.42	 3.48	 9.38	
HJ	 So,ware	 Barrier-‐Tree	 2.1	 2.5	 3.2	 4.1	 5.3	 7.2	 13.6	
HC	 So,ware	 Barrier-‐Flat	 0.85	 1.16	 1.86	 2.21	 4.31	 7.87	 32.17	
HJ	 So,ware	 Barrier-‐Flat	 1.6	 2.5	 3.4	 5.1	 8.4	 16.8	 53.5	
OpenMP	 0.6	 0.73	 0.86	 1.22	 2.78	 9.98	 10.58	

0	
4	
8	

12	
16	
20	

O
ve
rh
ea
d	
(u
s)
	

#	 threads	

Barrier	 Overhead	 on	 Dual	 CPU	 Niagra	 T2	

Figure 6.11 : Phaser barrier overhead on a dual-CPU Niagara T2 machine

machine, each Niagara T2 CPU has 8 hardware cores, each of which can sustain 8

SMT (simultaneous multithreading) threads for a total of 128 concurrent threads.

The experiments run on the Solaris 10 operating system and they were compiled us-

ing the Sun Studio 10 (update 1) OpenMP compiler. Figure 6.11 presents the barrier

overhead of our phaser implementation and OpenMP on the 128-thread Niagara T2

machine. For comparison, we also include the results of Habanero-Java phaser imple-

mentation. Due to the lack of hardware support for barriers or thread suspend/awake

in the Niagara T2 processor, we only evaluate the barrier implementation using the

busy-wait approach with and without hierarchical phasers. We can see that hierarchi-

cal phasers reduce the barrier overhead by a large margin for both the Habanero-C and

Habanero-Java, while the Habanero-C tree implementation outperforms the OpenMP

barrier.

144

(a) Cyclops64 Node

Latency
Overall Bandwidth

Load: 2 cycles; Store: 1 cycle

640GB/s

Load: 57 cycles; Store: 28 cycles
16GB/s (Multiple load and Multiple store

instructions); 2GB/s

Load: 31 cycles; Store: 15 cycles

320GB/s

64
Registers

SP
16kB

GM
~2.5MB

Off-Chip
DRAM

1GB

Read: 1 cycle
Write: 1 cycle

1.92 TB/s

(b) Cyclops64 Memory

Figure 6.12 : Cyclops64 Architecture Details

6.4 Phasers for Manycore Synchronization

In this Section, we explore a phaser implementation that leverages hardware support

for synchronization using the IBM Cyclops64 (C64) manycore chip [114] as our eval-

uation platform. The IBM Cyclops64 is a massively parallel manycore architecture

initially developed by IBM as part of the Blue Gene project. As shown in Figure 6.12,

a C64 processor features 80 processing cores on a chip, with two hardware thread units

per core that share one 64-bit floating point unit. Each core can issue one double

precision floating point Multiply Add instruction per cycle, for a peak performance

of 80 GFLOPS per chip when running at 500MHz. The processor chip includes a

high-bandwidth on-chip crossbar network with a total bandwidth of 384 GB/s. C64

employs three-levels of software-managed memory hierarchy, with the Scratch-Pad

(SP) currently used to hold thread-specific data. Each hardware thread unit has a

high-speed on-chip SRAM of 32KB that can be used as a cache.

C64 utilizes a dedicated signal bus (SIGB) that allows thread synchronization

without any memory bus interference. The SIGB connecting all threads on a chip

145

Name Description

tnt create(...) Create a TNT thread; its syntax is similar to pthread create

tnt join(...) Wait for a thread to terminate, similar to pthread join

tnt suspend() Suspend current thread

tnt awake (const tnt desc t) Awaken a suspended thread

tnt barrier include (tnt barrier t *) Join in the next barrier wait operation

tnt barrier exclude (tnt barrier t *) Withdraw from the next barrier wait operation

tnt barrier wait (tnt barrier t *) Wait until all threads arrive this point

Table 6.2 : Cyclops64 TNT APIs for Hardware Synchronization Primitives

can be used for broadcast operations taking less than 10 clock cycles, enabling effi-

cient barrier operations and mutual exclusion synchronization. Fast point-to-point

signal/wait operations are directly supported by hardware interrupts, with costs on

the order of tens of cycles. The C64 tool chain includes a highly efficient threading

library, named TiNy-Threads (TNT) [114], which uses the C64 hardware support

to implement threading primitives. The TNT API is similar to the Pthread API,

simplifying porting of pthread-based runtime systems and applications to Cyclops64.

Additionally, TNT provides APIs that can be used to access the hardware synchro-

nization primitives to allow for suspension of threads, and including and excluding

specific threads from barriers, as shown in Table 6.2.

6.4.1 Optimization Using Hardware Barriers

Phasers can be optimized in manycore architectures that offer direct hardware support

for barriers, such as C64. The phaser runtime is able to detect if a phaser operation

specified by the user program is equivalent to a barrier operation by checking whether

146

all phasers are registered in signal-wait mode. If so, the underlying hardware

support is used directly to perform the barrier operation. Detecting whether or not

a particular operation is equivalent to a barrier is straightforward from the phaser

model; hardware barriers can be used when all tasks on a phaser are registered in

signal-wait mode.

Implementing a hardware barrier in a phaser requires threads to include them-

selves in the barrier by calling tnt barrier include. This requirement is particularly

interesting in a tasking environment due to the fact that the worker thread that exe-

cutes the task has to include itself in the hardware barrier. The Habanero-C runtime

only includes a worker in the hardware barrier when it is ready to execute a task.

The C64 chip supports five hardware barriers that can be accessed using the TNT

barrier API. If a programmer uses more than five barriers in a program, the extra

barriers will execute as software barriers.

6.4.2 Optimization Using Thread Suspend and Awake

The TNT API provides functions to suspend a thread and to awake a sleeping thread.

A suspend instruction temporarily stops execution in a non-preemptive way, and a

signal instruction awakes the sleeping task. Using thread suspend and awake mecha-

nism in place of the busy-wait approach reduces memory bandwidth pressure because

all waiting tasks can suspend themselves instead of spinning. The master can collect

all the signals from waiting tasks and finally signals the suspended tasks to resume

the execution.

The C64 chip provides an interesting hardware feature called the “wake-up bit”.

When a thread tries to wake up another thread, it sets the “wake-up bit” for that

thread. This enables a thread to store a wake-up signal. Hence, if a thread tries to

147

suspend itself after a wake-up signal is sent, it wakes up immediately and the suspend

effectively becomes a no-op. This feature is utilized by phasers to transition from one

phase to the next without worrying about a thread that can execute a suspend after

a wake up signal.

6.4.3 Adaptive Phasers

Adaptability is one of the main features of our phaser implementation. As explained

before, the runtime can directly detect the synchronization operation being performed

and make a reasonable decision as to how to execute it. A phaser operation can

switch to the optimized versions that utilize hardware primitives. These details of

how a phaser operation is executed are hidden from the user.

Phaser operations can be implemented in a number of ways to take advantage

of the particular characteristics of the underlying hardware. Even when a phaser

has all tasks registered in signal-wait mode, it is not guaranteed that a hardware

barrier will be used. A task that is registered to support split-phase or fuzzy barriers

may signal ahead of its next operation. When a task registers as signal-only or

wait-only on a phaser that has been using a hardware barrier, our runtime detects

such a scenario and switches to software mode. The runtime chooses the best mode

of operation, depending on the current program state and available features. Each

implementation alternately exhibits particular traits: maximum portability and rea-

sonable performance is achieved with a busy-wait implementation; low bandwidth

and low power usage are featured in the suspend-awake implementation.

148

6.4.4 Memory Optimizations

Phaser and phaserSync objects contain volatile phase counters, and phaser operations

involve frequent read and write of those counters in both software based busy-wait ap-

proach and hardware-optimized implementations. So low latency and high bandwidth

of the memory system are key to the performance of phasers. The C64’s memory hi-

erarchy, as seen in Figure 6.12, is similar to hardware cache in regular commodity

CPUs. The power of using it comes from program manageability as our runtime itself

can decide which synchronization objects need to reside on or move to the high-speed

SRAM. Yet there is a tradeoff in this software-managed caching approach because

the DRAM is limited in its sizes and shared with stack in C64. For a simple DRAM-

optimization, the runtime allocates on SRAM, synchronization objects that contain

spinning counters. More complex optimizations use heuristic or historical informa-

tion to identify frequently-accessed data and move them to SRAM. Further memory

management by the Habanero-C runtime, such as allocating a list of synchronization

objects in a dense array, provide another level of memory optimizations on C64.

6.4.5 Results

Results of Memory Optimization on Cyclops64

In Figure 6.13, we show the barrier overhead of using software phasers that reside

on either SRAM or DRAM. By allocating the synchronization objects in SRAM, we

avoid spinning on flags allocated on the DRAM. Similar to past results [17] that

show the benefits of local spinning and avoiding spinning across the network, we

achieve better performance by spinning on SRAM allocated flags. This optimization

results in dramatic overhead reduction for both flat-phaser and hierarchical-phaser

149

Figure 6.13 : SRAM optimization for phasers on Cyclops64

implementations; two orders of magnitude for flat-phaser and 1 order of magnitude

for hierarchical phaser. From now on, we use SRAM hierarchical phaser implemen-

tation to represent our software phaser when comparing with other hardware-based

implementations.

Results of Barrier and Point-to-Point Microbenchmarks on Cyclops64

The barrier microbenchmark was based on the EPCC OpenMP syncbench benchmark.

Figure 6.14a shows the barrier overheads using four phaser implementations on C64.

The implementation that leverages the C64 hardware barrier incurs much lower over-

head than that of the software barrier. The implementation that uses suspend/awake

performs worse than software phasers because of the sequentially accumulated cost

of hardware interrupt in suspend/awake implementation. For software hierarchical

phasers, both signal gathering and wait operations are performed in parallel, thus

150

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128

O
v

e
rh

e
a

d
 (

u
s

)

threads

phaser with hardware barrier

software barrier-tree

phaser with hardware suspend/awake

software barrier-flat

(a) Phaser Barrier

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32 64 128

T
im

e
 (

u
s

)

threads

software phaser

phaser with hardware
suspend/awake

(b) Threadring

Figure 6.14 : Barrier and Point-to-Point Microbenchmarks

reducing overhead.

The threadring microbenchmark evaluates point-to-point signal-wait operation of

two tasks. In this program, a group of tasks form a signal ring; each task waits on the

signal from the previous task and signals the next task after receiving the signal. As

shown in Figure 6.14b, the memory consumption of the software busy-wait approach

has little impact on the time required to complete a round of the ring. In fact, the

implementation using software phasers performs slightly better than the one using

hardware interrupts. These imply the effectiveness of using the portable software-

based solution for point-to-point synchronizations. The high performance obtained

using the busy-wait implementation is due in part to the high bandwidth and low

latency of the local on-chip memory in C64. Although the other techniques in our

experiments use hardware support, they still suffer from overhead in the supporting

software required to use the hardware primitives. In contrast, busy-wait uses a very

simple polling mechanism that does not require complex software support.

151

6.5 Phasers for Hybrid Synchronization

Phasers have been extended to support collective operations at inter-node level. We

use the HCMPI programming model to create a hybrid synchronization construct,

called hcmpi-phaser, which uses phaser synchronization at intra-node level and MPI

collective synchronization at inter-node level. In this model, the synchronization

statement next provides unified synchronization for tasks registered on a phaser across

the whole system by using the HC-COMM runtime. In this section, we discuss the

HCMPI phaser barrier and accumulator models. We believe task based unified col-

lective synchronization operations on distributed systems to be a novel contribution.

Phaser API Description

ph = HCMPI PHASER CREATE(int mode) hcmpi-phaser create

ph = HCMPI ACCUM CREATE(int mode,

init val, HCMPI Type type, HCMPI Op oper) hcmpi-accum create

next phaser synchronization

accum next(value) accumulator synchronization

accum get(ph) accumulator result

Table 6.3 : HCMPI PHASER API

The goal of this hybrid synchronization model is to provide clean semantics for

system wide collective operations. We combine inter-node MPI collectives with intra-

node phaser synchronization. An instance of hcmpi-phaser is created using the

HCMPI PHASER CREATE API shown in Table 6.3. Since this hybrid model supports only

MPI collectives at inter-node level, an hcmpi-phaser can only be created using the

signal-wait mode. This also implies that the task which creates the hcmpi-phaser

152

instance is registered in signal-wait mode. Dynamic registration and deregistra-

tion is allowed, as well as arbitrary mode patterns for new tasks created after the

hcmpi-phaser instance. New tasks can be registered on a hcmpi-phaser in one of

signal-wait, signal-only or wait-only modes. So, regardless of the registration

modes used for tasks within a node, the inter-node synchronization will always be a

MPI collective, such as a barrier or a reduction. In a system-wide barrier or reduc-

tion operation, all tasks registered on a hcmpi-phaser have to be in signal-wait

mode. Registered tasks can synchronize both within the node and across nodes us-

ing the synchronization primitive next. The inter-node SPMD model requires that

every rank process creates its own hcmpi-phaser before participating in the system

wide next operation. Figure 6.15 shows an example of using the hcmpi-phaser as a

barrier.

finish {

phaser *ph;

ph = HCMPI PHASER CREATE(SIGNAL WAIT MODE);

for (i = 0; i < n; ++i) {

async phased(ph) IN(i) {

· · · ; next;

· · · //do post-barrier work

} /*async*/ } /*for*/ } /*finish*/

Figure 6.15 : HCMPI Phaser Barrier Model

The HCMPI model integrates intra-node phaser accumulators [115] with inter-

node MPI reducers using the hcmpi-accum construct. An instance of hcmpi-accum

is created using the HCMPI ACCUM CREATE API, shown in Table 6.3. The API takes a

153

HCMPI MAX HCMPI MIN HCMPI SUM

HCMPI PROD HCMPI LAND HCMPI BAND

HCMPI LOR HCMPI BOR HCMPI LXOR

HCMPI BXOR HCMPI MAXLOC HCMPI MINLOC

Table 6.4 : HCMPI Ops

registration mode, an initial value for the reduction element, a type of the element and

the type of the reduction operation. The registration mode can only be signal-wait

in the current implementation. Supported reduction operators are shown in Table 6.4.

In this model, computation tasks at the intra-node level register on a hcmpi-accum

instance and participate in the specified global reduction operation via the runtime

call accum next(value), which takes as an argument the individual datum provided

by the task for the reduction. Tasks arrive at the synchronization point with a

value and participate in all hcmpi-accum instances they are registered with. After

synchronization completes, accum get will return the globally reduced value. At the

inter-node level, we currently only support the MPI Allreduce model. This means

that a call to accum get() will return the globally reduced value. Figure 6.16 shows

an example of the hcmpi-accum model for the SUM operation.

6.5.1 Implementation

HCMPI builds on Habanero-C’s tree-based implementation of phaser and the HC-

COMM runtime to integrate inter-node MPI collectives and intra-node phaser syn-

chronization. Tree based phasers have been shown to scale much better than flat

phasers [112, 116]. HCMPI PHASER CREATE creates a phaser barrier, while HCMPI

154

finish {

phaser *ph;

ph = HCMPI ACCUM CREATE(HCMPI SUM,HCMPI INT);

for (i = 0; i < n; ++i) {

async phased IN(· · ·) {

int* my val = get my val();

accum next(my val);

· · · ;} /*async*/ } /*for*/ } /*finish*/

int* result = (int*)accum get(ph);

Figure 6.16 : HCMPI Phaser Accumulator Model

ACCUM CREATE creates an accumulator object. Tasks can dynamically register to and

drop from a hcmpi-phaser. The next statement and the accum next APIs act as the

global synchronization points for barriers and accumulators. Figure 6.17 illustrates

the synchronization process for HCMPI phaser barrier and accumulator operations.

In the case of a barrier, tasks, T0 to T7, arrive at the next statement and signal

the phaser. Then they start the wait phase. These tasks traverse the internal nodes

of the phaser tree to see if they can become sub-masters at any of the sub-phaser

nodes S0 to S6. The first task to arrive at a sub-phaser becomes the sub-master for

that node. The sub-master collects the signals from its sub-tree and then signals its

parent. This way, signals on the phaser tree propagate up to the root node. The first

task to arrive at the root node becomes the phaser master. Others wait for the phaser

master to signal the start of the next phase. The MPI Barrier operation is started

only after the phaser master at the root sub-phaser receives all signals in the phaser

tree. The phaser master waits on a notification from the communication task that

155

T0	
 T1	
 T2	
 T3	
 T7	
T6	
T5	
T4	

T0	
 T1	
 T2	
 T3	
 T7	
T6	
T5	
T4	

S3	
 S4	
 S5	
 S6	

S1	
 S2	

S0	

COMM Accum Start (Value)	

Done (Value)	

COMM	

PHASER/	

ACCUM	

TASK	

MPI	

Barrier/	

Reduce,	

etc.	

Intra	

Node	

Inter	

Node	

COMM Barrier Start	

Figure 6.17 : HCMPI Phaser Barrier

the MPI Barrier operation is completed. Once the notification arrives, the phaser

master signals all the intra-node tasks to start their next phase. In case of phaser

accumulators, each task arrives at the accum next synchronization point with a value

in addition to the signal. The value gets reduced to a single element at the root of

the phaser tree and then the phaser master signals the hcmpi phaser communication

task to start the MPI Allreduce operation. The globally reduced value is saved in

the phaser data structure and can be retrieved by the accum get call on that phaser

object.

6.5.2 Results

We measure the performance of HCMPI phaser barriers and accumulators. We com-

pare against MPI-only and hybrid MPI+OpenMP performance. We used a modified

156

version of the EPCC Syncbench [113] for barrier and reduction (accumulator) tests.

The benchmarks run a loop containing a barrier or reduction operation for a large

number of times. The cost of synchronization is estimated by subtracting the loop

overhead from the iterations. We measure synchronization performance on 2 to 64

nodes while using 2 to 8 cores per node. In our experiment, the MPI-only version

uses MPI THREAD SINGLE, while the hybrid MPI+OpenMP version uses MPI THREAD

MULTIPLE. Both the HCMPI and hybrid versions use one process per node and use

threads for the number of cores used inside a node. The MPI-only version uses one

process for every core used in the experiment to perform distributed collective oper-

ations. The HCMPI test creates the number of tasks and computation workers equal

to the number of cores used per node in the experiment. Together they perform the

integrated synchronization at the intra-node and inter-node level for both barriers and

accumulators. We measure HCMPI phaser barrier performance. The MPI+OpenMP

hybrid version creates a parallel region of number of threads equal to the number of

cores. Threads first synchronize using a OpenMP barrier, then the MPI Barrier is

called by a single thread while the others wait at subsequent OpenMP barrier. The

hybrid reduction test completes a global reduction by first performing an OpenMP for

loop reduction over the number of threads followed by MPI Allreduce by a single

thread. Remaining threads wait at a OpenMP barrier.

The results in Table 6.5 clearly demonstrate that MPI and hybrid times increase

at a faster rate compared to HCMPI with increasing number of cores per node, for

both barriers and accumulators. HCMPI depends on MPI performance for inter-node

synchronization. When scaling up the number of cores within a node, HCMPI is able

to use intra-node phaser synchronization, while MPI depends on MPI Barrier and

MPI Allreduce over all cores. Overall, hybrid MPI+OpenMP outperforms MPI while

157

Collective Synchronization Times in micro-seconds

Nodes 2 4 8

Cores 2 4 8 2 4 8 2 4 8

MPI Barrier 3.0 4.1 5.1 5.8 6.7 7.6 9.1 9.8 11.1

MPI+OMP Barrier 2.5 2.8 3.9 5.0 5.8 6.7 8.2 9.1 10.0

HCMPI Phaser 2.1 2.2 2.7 4.8 4.8 5.4 7.7 7.7 8.6

MPI Reduction 3.8 4.6 5.2 6.3 7.2 7.9 9.5 10.7 12.1

MPI+OMP Reduction 3.1 3.6 4.9 5.4 5.9 7.2 8.2 9.1 10.5

HCMPI Accumulator 2.6 2.8 3.5 4.9 5.0 5.8 7.7 7.8 9.4

Nodes 16 32 64

Cores 2 4 8 2 4 8 2 4 8

MPI Barrier 12.6 13.4 14.7 20.0 19.9 21.6 25.3 25.7 26.2

MPI+OMP Barrier 11.6 12.6 14.2 17.2 19.0 20.8 21.8 24.7 26.2

HCMPI Phaser 11.3 11.2 12.1 17.2 17.8 18.0 22.0 21.7 23.6

MPI Reduction 12.8 14.3 15.3 17.7 18.7 19.8 25.0 25.7 26.7

MPI+OMP Reduction 11.1 12.4 14.1 15.1 16.9 18.9 20.8 23.4 25.8

HCMPI Accumulator 10.7 10.5 12.3 14.7 15.4 16.9 20.8 20.6 23.5

Table 6.5 : EPCC Syncbench with MVAPICH2 on Infiniband

HCMPI outperforms both. These experiments were performed using MVAPICH2

on the DAVinCI cluster. We have not included the results for Jaguar because we

discovered inconsistent MPI Barrier performance with MPICH2.

6.6 Summary

In this chapter we presented a new algorithm that enables generalized tree-based

synchronization for the phaser model. We integrated the phaser model into the

158

Habanero-C task parallel language. We presented the design of the phaser model

on the manycore Cyclops64 processor. We have shown different techniques for phaser

synchronization on Cyclops64 that use a combination of software-based busy-wait

approach, hardware barriers, and hardware support for thread suspend/awake. Our

experiments show that phasers are able to take advantage of hardware primitives

on manycore architectures and optimizations for their memory subsystems to pro-

vide superior performance to portable software approaches. We have also extended

the phaser construct for integrated hybrid synchronization within and across nodes.

Our experiments have shown phasers can outperform standard implementations for

barriers, while at the same time provide the flexibility of unified collective and point-

to-point synchronization.

159

Chapter 7

Conclusions

In this dissertation, we addressed the software challenges for programming on extreme-

scale systems described in the thesis statement in Section 1.1. This research focussed

on the role of a software runtime system in three key areas. The first focus area ad-

dressed scalability challenges for a dynamic task parallel system when interfaced with

a communication system. The second area of research was related to controlling affini-

ties of compute and data. The third research area dealt with task synchronization

issues for extreme-scale systems.

In chapter 4, we presented the HC-COMM runtime communication system and

HCMPI programming model. The HC-COMM runtime design is a novel scalable

runtime system consisting of a dedicated communication worker and a number of

computation workers. The HCMPI programming model unifies asynchronous task

parallelism at intra-node level with MPI’s message passing model at the inter-node

level. The combination of asynchronous message passing and computation tasks

enable programmers to easily implement techniques for latency hiding, communica-

tion/computation overlap and event driven tasks. With HCMPI’s task parallel model,

users can benefit from MPI integration with structured task parallelism and data-flow

programming. Constructs such as async, finish, and await have been seamlessly in-

tegrated with the MPI message passing model. Computation tasks can create new

communication tasks, wait for their completion and start execution based on message

events.

160

Our experimental microbenchmark results show that a dedicated communica-

tion worker manages contention on the communication sub-system better than mul-

tithreaded MPI when increasing the number of communicating resources inside a

node. For the UTS benchmark on the ORNL Jaguar machine with 1024 nodes and

16 cores/node, HCMPI performed 22.3× faster than MPI for input size T1XXL and

18.5× faster than MPI for input size T3XXL (using the best chunking and polling

parameters for both HCMPI and MPI). This result demonstrated the importance of a

dedicated communication worker for distributed work-stealing. The communication

worker responded to steal requests faster without interrupting any computation work-

ers. This overlapping the inter-process steals with intra-process computation proved

essential for scalable performance.

In chapter 5, we describe our approach to manage affinities of computation and

data at inter-node and intra-node levels. We presented a distributed macro dataflow

programming model, called HAPGNS, as a simple extension to the shared-memory

DDF model. This programming model does not require any knowledge of MPI. User

provided data distribution functions act as locality directives. Scalability results for

the Smith-Waterman benchmark show the practicality of this approach, which offers

high programmability.

Our intra-node locality optimizations are driven by a tuning framework geared

towards its use by experts with detailed system knowledge. The tuning framework

allows the user to express affinities between task computations and associated data

through hierarchical affinity groups. The runtime uses HPT, a hierarchical place tree

construct, used to model the memory hierarchy of a system. The tuning optimiza-

tions demonstrate benefit from spatial and temporal task locality using runtime co-

scheduling of tasks. We showed performance improvements over an already parallel,

161

optimally tiled and load balanced execution on a fairly small system with today’s data

movement costs. We believe that improvements on future systems with pronounced

data movement costs will be much greater.

In chapter 6, we presented a design for the phaser synchronization model with ap-

plicability to extreme-scale systems. We showed scalable phaser designs for multicore

compute nodes, manycore compute nodes and inter-node systems. We presented a

new algorithm for tree-based synchronization that has general applicability without

sacrificing performance. Our results showed that the phaser barrier performance was

at par with Intel ICC OpenMP and IBM XLC OpenMP barrier performance, and in

some cases even outperforming them. We also showed that a phaser is able to take

advantage of hardware primitives on manycore architectures.

In this dissertation, we have shown that programming on extreme-scale systems

will be aided by a combination of novel programming models and a scalable run-

time design. Novel programming models need provisions for forward scalability and

programmability for existing and future applications. We showed that the HCMPI

programming model can help existing MPI applications embrace task parallelism.

The HAPGNS programming model is suitable for designing future applications in

the data-flow paradigm without requiring any knowledge of MPI. The HC-COMM

runtime system unified inter-node communication with intra-node computation and

provided scalable performance for task parallel applications. The tuning framework

extended a work-stealing scheduler to guide dynamic execution of tasks according to

affinity directives from the user. It used a two-level task scheduling model, a tuning

tree and a HPT, to co-schedule tasks for spatial and temporal locality benefits. The

phaser construct enabled task synchronization for long running iterative computation

at both intra-node and inter-node levels. At intra-node level, a phaser can work for

162

both barrier and point-to-point synchronization patterns, while at inter-node level

it can integrate with MPI collectives for scalable performance. By addressing these

challenges, this dissertation makes concrete contributions towards addressing some of

the key software challenges for extreme-scale systems. Many more challenges await

us on our path to exascale and beyond.

163

Bibliography

[1] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E. Elno-

hazy, M. Hall, R. Harrison, W. Harrod, K. Hill, J. Hiller, S. Karp, C. Koel-

bel, D. Koester, P. Kogge, J. Levesque, D. Reed, V. Sarkar, R. Schreiber,

M. Richards, A. Scarpelli, J. Shalf, A. Snavely, and T. Sterling, “ExaS-

cale Computing Software Study: Software Challenges in Extreme Scale Sys-

tems, Vivek Sarkar, Editor & Study Lead.” DARPA IPTO ExaScale Com-

puting Study, September 2009. http://users.ece.gatech.edu/~mrichard/

ExascaleComputingStudyReports/ECSS%20report%20101909.pdf.

[2] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-

neau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keck-

ler, D. Klein, P. Kogge, R. Lucas, M. Richards, A. Scarpelli, S. Scott,

A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “ExaScale Com-

puting Study: Technology Challenges in Achieving Exascale Systems, Pe-

ter Kogge, Editor & Study Lead.” DARPA IPTO ExaScale Comput-

ing Study, September 2008. http://users.ece.gatech.edu/~mrichard/

ExascaleComputingStudyReports/exascale_final_report_100208.pdf.

[3] W. Carlson, T. El-Ghazawi, B. Numrich, and K. Yellick, “Programming in the

Partitioned Global Address Space Model.” Tutorial at Supercomputing 2003,

November 2003. http://upc.gwu.edu/tutorials/tutorials_sc2003.pdf.

http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/exascale_final_report_100208.pdf
http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/exascale_final_report_100208.pdf
http://upc.gwu.edu/tutorials/tutorials_sc2003.pdf

164

[4] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programmability and the

Chapel Language,” Int. J. High Perform. Comput. Appl., vol. 21, pp. 291–312,

Aug. 2007.

[5] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. von Praun, and V. Sarkar, “X10: An Object-oriented Approach to Non-

uniform Cluster Computing,” in Proceedings of the 20th Annual ACM SIG-

PLAN Conference on Object-oriented Programming, Systems, Languages, and

Applications, OOPSLA ’05, (New York, NY, USA), pp. 519–538, ACM, 2005.

[6] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K. Warren,

“Introduction to UPC and Language Specication,” Tech. Rep. CCS-TR-99-

157, Center for Computing Sciences, Institute for Defense Analyses, May 1999.

http://upc.lbl.gov/publications/upctr.pdf.

[7] R. W. Numrich and J. Reid, “Co-Array Fortran for parallel programming,”

ACM SIGPLAN Fortran Forum Archive, vol. 17, pp. 1–31, Aug. 1998.

[8] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,

Version 3.0, September 2012. http://www.mpi-forum.org/docs/mpi-3.0/

mpi30-report.pdf.

[9] Habanero Multicore Software Research Group, Rice University, “The Habanero-

C Programming System.” https://wiki.rice.edu/confluence/display/

HABANERO/Habanero-C.

http://upc.lbl.gov/publications/upctr.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://wiki.rice.edu/confluence/display/HABANERO/Habanero-C
https://wiki.rice.edu/confluence/display/HABANERO/Habanero-C

165

[10] M. Frigo, C. E. Leiserson, and K. H. Randall, “The Implementation of the

Cilk-5 Multithreaded Language,” in Proceedings of the ACM SIGPLAN 1998

Conference on Programming Language Design and Implementation, PLDI ’98,

(New York, NY, USA), pp. 212–223, ACM, 1998.

[11] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave, M. Chabbi, M. Grossman,

V. Sarkar, and Y. Yan, “Integrating Asynchronous Task Parallelism with MPI,”

in Proceedings of the 2013 IEEE 27th International Symposium on Parallel and

Distributed Processing, IPDPS ’13, (Washington, DC, USA), pp. 712–725, IEEE

Computer Society, 2013.

[12] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer, “Phasers: a unified

deadlock-free construct for collective and point-to-point synchronization,” in

ICS ’08: Proceedings of the 22nd annual international conference on Supercom-

puting, (New York, NY, USA), pp. 277–288, ACM, 2008.

[13] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar, “Hierarchical Place Trees: A Portable

Abstraction for Task Parallelism and Data Movement,” in LCPC’09: Proceed-

ings of the 22nd International Workshop on Languages and Compilers for Par-

allel Computing, vol. 5898 of Lecture Notes in Computer Science, Springer,

2009.

[14] I. Brooks, EugeneD., “The Butterfly Barrier,” International Journal of Parallel

Programming, vol. 15, no. 4, pp. 295–307, 1986.

[15] D. Hensgen, R. Finkel, and U. Manber, “Two Algorithms for Barrier Synchro-

nization,” Int. J. Parallel Program., vol. 17, pp. 1–17, Feb. 1988.

166

[16] B. D. Lubachevsky, “Synchronization Barrier and Related Tools for Shared

Memory Parallel Programming,” Int. J. Parallel Program., vol. 19, pp. 225–

250, Mar. 1991.

[17] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for Scalable Synchroniza-

tion on Shared-memory Multiprocessors,” ACM Trans. Comput. Syst., vol. 9,

pp. 21–65, Feb. 1991.

[18] G. E. Blelloch, Vector Models for Data-parallel Computing. Cambridge, MA,

USA: MIT Press, 1990.

[19] E. W. Dijkstra, “The Origin of Concurrent Programming,” ch. Cooperating

Sequential Processes, pp. 65–138, New York, NY, USA: Springer-Verlag New

York, Inc., 2002.

[20] Arvind, R. S. Nikhil, and K. K. Pingali, “I-structures: Data Structures for

Parallel Computing,” ACM Trans. Program. Lang. Syst., vol. 11, pp. 598–632,

Oct. 1989.

[21] P. S. Barth, R. S. Nikhil, and Arvind, “M-Structures: Extending a Parallel,

Non-strict, Functional Language with State,” in Proceedings of the 5th ACM

Conference on Functional Programming Languages and Computer Architecture,

(London, UK, UK), pp. 538–568, Springer-Verlag, 1991.

[22] H. C. Baker, Jr. and C. Hewitt, “The incremental garbage collection of pro-

cesses,” in Proceedings of the 1977 symposium on Artificial intelligence and

programming languages, (New York, NY, USA), pp. 55–59, ACM, 1977.

167

[23] R. H. Halstead, Jr., “Implementation of Multilisp: Lisp on a Multiprocessor,”

in Proceedings of the 1984 ACM Symposium on LISP and Functional Program-

ming, LFP ’84, (New York, NY, USA), pp. 9–17, ACM, 1984.

[24] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove, “X10 Lan-

guage Specication Version 2.4,” September 2013. http://x10.sourceforge.

net/documentation/languagespec/x10-latest.pdf.

[25] Cray Inc., 901 Fifth Avenue, Suite 1000, Seattle, WA 98164, Chapel Lan-

guage Specication Version 0.94, October 2013. http://chapel.cray.com/

spec/spec-0.94.pdf.

[26] J. C. Reynolds, “The discoveries of continuations,” Lisp Symb. Comput., vol. 6,

pp. 233–248, Nov. 1993.

[27] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman, MPI:

The Complete Reference. Cambridge, MA, USA: MIT Press, 1995.

[28] M. J. Rashti, J. Green, P. Balaji, A. Afsahi, and W. Gropp, “Multi-core and

network aware MPI topology functions,” in Proceedings of the 18th European

MPI Users’ Group conference on Recent advances in the message passing inter-

face, EuroMPI’11, (Berlin, Heidelberg), pp. 50–60, Springer-Verlag, 2011.

[29] E. Jeannot and G. Mercier, “Near-optimal placement of MPI processes on hi-

erarchical NUMA architectures,” in Proceedings of the 16th international Euro-

Par conference on Parallel processing: Part II, Euro-Par’10, (Berlin, Heidel-

berg), pp. 199–210, Springer-Verlag, 2010.

http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://chapel.cray.com/spec/spec-0.94.pdf
http://chapel.cray.com/spec/spec-0.94.pdf

168

[30] Y. Cui, K. B. Olsen, T. H. Jordan, K. Lee, J. Zhou, P. Small, D. Roten, G. Ely,

D. K. Panda, A. Chourasia, J. Levesque, S. M. Day, and P. Maechling, “Scalable

Earthquake Simulation on Petascale Supercomputers,” in Proceedings of the

2010 ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’10, (Washington, DC, USA), pp. 1–20,

IEEE Computer Society, 2010.

[31] K. Hotta, “Programming on K computer.” Fujitsu presentation at Supercom-

puting 2010, November 2010. http://www.fujitsu.com/downloads/TC/sc10/

programming-on-k-computer.pdf.

[32] Advanced Simulation and Computing Program, (LLNL), “ASC Sequoia Bench-

mark Codes.” Available at https://asc.llnl.gov/sequoia/benchmarks/.

[33] M. C. Cera, J. V. F. Lima, N. Maillard, and P. O. A. Navaux, “Challenges and

Issues of Supporting Task Parallelism in MPI,” in Proceedings of the 17th Euro-

pean MPI Users’ Group Meeting Conference on Recent Advances in the Message

Passing Interface, EuroMPI’10, (Berlin, Heidelberg), pp. 302–305, Springer-

Verlag, 2010.

[34] D. Buntinas, G. Mercier, and W. Gropp, “Design and Evaluation of Nemesis, a

Scalable, Low-Latency, Message-Passing Communication Subsystem,” in Pro-

ceedings of the Sixth IEEE International Symposium on Cluster Computing and

the Grid, CCGRID ’06, (Washington, DC, USA), pp. 521–530, IEEE Computer

Society, 2006.

http://www.fujitsu.com/downloads/TC/sc10/programming-on-k-computer.pdf
http://www.fujitsu.com/downloads/TC/sc10/programming-on-k-computer.pdf
https://asc.llnl.gov/sequoia/benchmarks/

169

[35] R. Brightwell, B. Lawry, A. B. MacCabe, and R. Riesen, “Portals 3.0: Proto-

col Building Blocks for Low Overhead Communication,” in Proceedings of the

16th International Parallel and Distributed Processing Symposium, IPDPS ’02,

(Washington, DC, USA), pp. 268–, IEEE Computer Society, 2002.

[36] L. Dagum and R. Menon, “OpenMP: An Industry-Standard API for Shared-

Memory Programming,” IEEE Comput. Sci. Eng., vol. 5, pp. 46–55, Jan. 1998.

[37] OpenMP Architecture Review Board, OpenMP Application Program Interface,

Version 4.0, July 2013. http://www.openmp.org/mp-documents/OpenMP4.0.

0.pdf.

[38] R. Rabenseifner, G. Hager, G. Jost, and R. Keller, “Hybrid MPI and OpenMP

Parallel Programming,” in Recent Advances in Parallel Virtual Machine and

Message Passing Interface (B. Mohr, J. Trff, J. Worringen, and J. Dongarra,

eds.), vol. 4192 of Lecture Notes in Computer Science, pp. 11–11, Springer

Berlin Heidelberg, 2006.

[39] H. Jin and R. F. Van der Wijngaart, “Performance Characteristics of the Multi-

zone NAS Parallel Benchmarks,” J. Parallel Distrib. Comput., vol. 66, pp. 674–

685, May 2006.

[40] M. F. Su, I. El-Kady, D. A. Bader, and S.-Y. Lin, “A Novel FDTD Application

Featuring OpenMP-MPI Hybrid Parallelization,” in Proceedings of the 2004

International Conference on Parallel Processing, ICPP ’04, (Washington, DC,

USA), pp. 373–379, IEEE Computer Society, 2004.

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

170

[41] E. Yilmaz, R. Payli, H. Akay, and A. Ecer, “Hybrid Parallelism for CFD Simu-

lations: Combining MPI with OpenMP,” in Parallel Computational Fluid Dy-

namics 2007, vol. 67 of Lecture Notes in Computational Science and Engineer-

ing, pp. 401–408, Springer Berlin Heidelberg, 2009.

[42] W. Pfeiffer and A. Stamatakis, “Hybrid MPI/Pthreads parallelization of the

RAxML phylogenetics code,” in Parallel Distributed Processing, Workshops and

Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pp. 1–8, 2010.

[43] UPC Consortium, “UPC Language Specifications, Version 1.2,” Tech. Rep.

LBNL-59208, Lawrence Berkeley National Lab, May 2005. http://www.gwu.

edu/~upc/publications/LBNL-59208.pdf.

[44] The Berkeley UPC Project (joint project of LBNL and UC Berkeley), “Berkeley

UPC version 2.18.0,” October 2013. http://upc.lbl.gov/.

[45] D. Bonachea, “GASNet Specification, v1.1,” Tech. Rep. UCB/CSD-02-1207,

U.C. Berkeley, October 2002. http://digitalassets.lib.berkeley.edu/

techreports/ucb/text/CSD-02-1207.pdf (newer versions also available at

http://gasnet.lbl.gov).

[46] F. Blagojević, P. Hargrove, C. Iancu, and K. Yelick, “Hybrid PGAS Runtime

Support for Multicore Nodes,” in Proceedings of the Fourth Conference on Par-

titioned Global Address Space Programming Model, PGAS ’10, (New York, NY,

USA), pp. 3:1–3:10, ACM, 2010.

http://www.gwu.edu/~upc/publications/LBNL-59208.pdf
http://www.gwu.edu/~upc/publications/LBNL-59208.pdf
http://upc.lbl.gov/
http://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-02-1207.pdf
http://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-02-1207.pdf
http://gasnet.lbl.gov

171

[47] J. Mellor-Crummey, L. Adhianto, W. N. Scherer, III, and G. Jin, “A New Vision

for Coarray Fortran,” in Proceedings of the Third Conference on Partitioned

Global Address Space Programing Models, PGAS ’09, (New York, NY, USA),

pp. 5:1–5:9, ACM, 2009.

[48] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,

P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken, “Titanium: a

high-performance Java dialect,” Concurrency: Practice and Experience, vol. 10,

no. 11-13, pp. 825–836, 1998.

[49] P. N. Hilfinger, D. O. Bonachea, K. Datta, D. Gay, S. L. Graham, B. R. Liblit,

G. Pike, J. Z. Su, and K. A. Yelick, “Titanium Language Reference Manual,”

Technical Report UCB/EECS-2005-15, University of California at Berkeley,

Berkeley, CA, USA, 2005.

[50] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park,

M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Sequoia: Program-

ming the Memory Hierarchy,” in Proceedings of the 2006 ACM/IEEE Confer-

ence on Supercomputing, SC ’06, (New York, NY, USA), ACM, 2006.

[51] B. Alpern, L. Carter, and J. Ferrante, “Modeling parallel computers as memory

hierarchies,” in Programming Models for Massively Parallel Computers, 1993.

Proceedings, pp. 116–123, 1993.

172

[52] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B. Fraguela, M. J. Garzarán,

D. Padua, and C. von Praun, “Programming for Parallelism and Locality with

Hierarchically Tiled Arrays,” in Proceedings of the Eleventh ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’06,

(New York, NY, USA), pp. 48–57, ACM, 2006.

[53] R. Chandra, A. Gupta, and J. L. Hennessy, “COOL: An Object-Based Language

for Parallel Programming,” Computer, vol. 27, pp. 13–26, Aug. 1994.

[54] L. V. Kale and S. Krishnan, “CHARM++: a portable concurrent object ori-

ented system based on C++,” in Proceedings of the eighth annual conference

on Object-oriented programming systems, languages, and applications, OOP-

SLA ’93, (New York, NY, USA), pp. 91–108, ACM, 1993.

[55] J. Labarta, “StarSs: a Programming Model for the Multicore Era.” In PRACE

Workshop ’New Languages & Future Technology Prototypes’ at the Leibniz

Supercomputing Centre in Garching (Germany), March 2010. http://www.

prace-project.eu/IMG/pdf/08_starss_jl.pdf.

[56] A. Duran, E. Ayguad, R. M. Badia, J. Labarta, L. Martinell, X. Martorell,

and J. Planas, “OmpSs: A proposal for programming heterogeneous multi-core

architectures,” Parallel Processing Letters, vol. 21, no. 02, pp. 173–193, 2011.

[57] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. M. Badia,

E. Ayguade, and J. Labarta, “Productive cluster programming with OmpSs,” in

Proceedings of the 17th international conference on Parallel processing - Volume

Part I, Euro-Par’11, (Berlin, Heidelberg), pp. 555–566, Springer-Verlag, 2011.

http://www.prace-project.eu/IMG/pdf/08_starss_jl.pdf
http://www.prace-project.eu/IMG/pdf/08_starss_jl.pdf

173

[58] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing Local-

ity and Independence with Logical Regions,” in Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analy-

sis, SC ’12, (Los Alamitos, CA, USA), pp. 66:1–66:11, IEEE Computer Society

Press, 2012.

[59] H. Kaiser, M. Brodowicz, and T. Sterling, “ParalleX An Advanced Parallel Exe-

cution Model for Scaling-Impaired Applications,” in Proceedings of the 2009 In-

ternational Conference on Parallel Processing Workshops, ICPPW ’09, (Wash-

ington, DC, USA), pp. 394–401, IEEE Computer Society, 2009.

[60] J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Work Stealing and

Persistence-based Load Balancers for Iterative Overdecomposed Applications,”

in Proceedings of the 21st International Symposium on High-Performance Paral-

lel and Distributed Computing, HPDC ’12, (New York, NY, USA), pp. 137–148,

ACM, 2012.

[61] ETI Inc., “SWARM (SWift Adaptive Runtime Machine): Scalable Performance

Optimization For Multi-Core/Multi-Node.” http://www.etinternational.

com/index.php/products/swarmbeta.

[62] G. Aupy, M. Faverge, Y. Robert, J. Kurzak, P. Luszczek, and J. Dongarra, “Im-

plementing a systolic algorithm for QR factorization on multicore clusters with

PaRSEC,” in PROPER 2013 - 6th Workshop on Productivity and Performance,

(Aachen, Germany), Aug. 2013.

[63] F. Schlimbach, “Distributed CnC for C++,” in 2nd Annual Workshop for Con-

current Collections, (Houston, TX), 2010.

http://www.etinternational.com/index.php/products/swarmbeta
http://www.etinternational.com/index.php/products/swarmbeta

174

[64] C. Fu and T. Yang, “Run-time Techniques for Exploiting Irregular Task Par-

allelism on Distributed Memory Architectures,” Journal of Parallel and Dis-

tributed Computing, vol. 42, pp. 143–156, 1997.

[65] Y. Jégou, “Task migration and fine grain parallelism on distributed memory ar-

chitectures,” in Parallel Computing Technologies (V. Malyshkin, ed.), vol. 1277

of Lecture Notes in Computer Science, pp. 226–240, Springer Berlin / Heidel-

berg, 1997.

[66] S. Ramaswamy, S. Sapatnekar, and P. Banerjee, “A framework for exploiting

task and data parallelism on distributed memory multicomputers,” Parallel and

Distributed Systems, IEEE Transactions on, vol. 8, pp. 1098 –1116, nov 1997.

[67] E. Allan, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu, G. L. S.

Jr., and S. Tobin-Hochstadt, “The Fortress Language Specification Version 1.0,”

technical report, Sun Microsystems, 2008.

[68] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon,

Parallel Programming in OpenMP. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 2001.

[69] B. Chapman, G. Jost, and R. v. d. Pas, Using OpenMP: Portable Shared Mem-

ory Parallel Programming (Scientific and Engineering Computation). The MIT

Press, 2007.

[70] J. Reinders, Intel Threading Building Blocks. Sebastopol, CA, USA: O’Reilly

& Associates, Inc., first ed., 2007.

175

[71] V. Cavé, Z. Budimlić, and V. Sarkar, “Comparing the usability of library vs.

language approaches to task parallelism,” in Evaluation and Usability of Pro-

gramming Languages and Tools, PLATEAU ’10, pp. 9:1–9:6, 2010.

[72] Arch D. Robison, “Parallel Programming with Cilk Plus.” Tuto-

rial at International Supercomputing Conference 2012, June 2012.

http://parallelbook.com/sites/parallelbook.com/files/ISC2012_

Tutorial_9_CilkPlus_Robison_final.pdf (source code available at

https://www.cilkplus.org/).

[73] R. D. Blumofe and C. E. Leiserson, “Scheduling Multithreaded Computations

by Work Stealing,” in Proceedings of the 35th Annual Symposium on Founda-

tions of Computer Science, SFCS ’94, (Washington, DC, USA), pp. 356–368,

IEEE Computer Society, 1994.

[74] OpenMP Architecture Review Board, “OpenMP Application Program In-

terface, Version 3.0,” May 2008. http://www.openmp.org/mp-documents/

spec30.pdf.

[75] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-Java: The New Ad-

ventures of Old X10,” in Proceedings of the 9th International Conference on

Principles and Practice of Programming in Java, PPPJ ’11, (New York, NY,

USA), pp. 51–61, ACM, 2011.

[76] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-first

scheduling policies for async-finish task parallelism,” in Proceedings of the 2009

IEEE International Symposium on Parallel&Distributed Processing, IPDPS ’09,

(Washington, DC, USA), pp. 1–12, IEEE Computer Society, 2009.

http://parallelbook.com/sites/parallelbook.com/files/ISC2012_Tutorial_9_CilkPlus_Robison_final.pdf
http://parallelbook.com/sites/parallelbook.com/files/ISC2012_Tutorial_9_CilkPlus_Robison_final.pdf
https://www.cilkplus.org/
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf

176

[77] S. Tasirlar and V. Sarkar, “Data-Driven Tasks and Their Implementation,” in

Proceedings of the 2011 International Conference on Parallel Processing, ICPP

’11, (Washington, DC, USA), pp. 652–661, IEEE Computer Society, 2011.

[78] D. Chase and Y. Lev, “Dynamic circular work-stealing deque,” in Proceedings

of the seventeenth annual ACM symposium on Parallelism in algorithms and

architectures, SPAA ’05, (New York, NY, USA), pp. 21–28, ACM, 2005.

[79] R. Thakur, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar,

E. Lusk, and J. L. Traeff, “MPI at Exascale,” in Procceedings of SciDAC 2010,

Jun. 2010.

[80] F. Cappello and O. Richard, “Performance Characteristics of a Network of

Commodity Multiprocessors for the NAS Benchmarks Using a Hybrid Memory

Model,” in Proceedings of the 1999 International Conference on Parallel Ar-

chitectures and Compilation Techniques, PACT ’99, (Washington, DC, USA),

pp. 108–, IEEE Computer Society, 1999.

[81] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell, S. L. Gra-

ham, P. Hargrove, P. Hilfinger, P. Husbands, C. Iancu, A. Kamil, R. Nishtala,

J. Su, M. Welcome, and T. Wen, “Productivity and performance using parti-

tioned global address space languages,” in Proceedings of the 2007 international

workshop on Parallel symbolic computation, PASCO ’07, (New York, NY, USA),

pp. 24–32, ACM, 2007.

177

[82] F. Cappello and D. Etiemble, “MPI versus MPI+OpenMP on IBM SP for the

NAS benchmarks,” in Proceedings of the 2000 ACM/IEEE conference on Su-

percomputing, Supercomputing ’00, (Washington, DC, USA), IEEE Computer

Society, 2000.

[83] D. Scales, K. Gharachorloo, and A. Aggarwal, “Fine-Grain Software Distributed

Shared Memory on SMP Clusters,” in Proceedings of the 4th International Sym-

posium on High-Performance Computer Architecture, HPCA ’98, (Washington,

DC, USA), pp. 125–, IEEE Computer Society, 1998.

[84] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, “Optimizing bandwidth

limited problems using one-sided communication and overlap,” in Proceed-

ings of the 20th international conference on Parallel and distributed processing,

IPDPS’06, (Washington, DC, USA), pp. 84–84, IEEE Computer Society, 2006.

[85] V. Marjanović, J. Labarta, E. Ayguadé, and M. Valero, “Overlapping commu-

nication and computation by using a hybrid MPI/SMPSs approach,” in Pro-

ceedings of the 24th ACM International Conference on Supercomputing, (New

York, NY, USA), pp. 5–16, 2010.

[86] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid MPI/OpenMP Parallel Pro-

gramming on Clusters of Multi-Core SMP Nodes,” in Proceedings of the 2009

17th Euromicro International Conference on Parallel, Distributed and Network-

based Processing, PDP ’09, (Washington, DC, USA), pp. 427–436, IEEE Com-

puter Society, 2009.

178

[87] G. Pike and P. N. Hilfinger, “Better tiling and array contraction for compiling

scientific programs,” in Proceedings of the 2002 ACM/IEEE conference on Su-

percomputing, Supercomputing ’02, (Los Alamitos, CA, USA), pp. 1–12, IEEE

Computer Society Press, 2002.

[88] D. Li, B. De Supinski, M. Schulz, K. Cameron, and D. Nikolopoulos, “Hy-

brid MPI/OpenMP power-aware computing,” in Parallel Distributed Processing

(IPDPS), 2010 IEEE International Symposium on, pp. 1–12, 2010.

[89] A. M. Aji, L. S. Panwar, F. Ji, M. Chabbi, K. Murthy, P. Balaji, K. R. Bisset,

J. Dinan, W.-c. Feng, J. Mellor-Crummey, X. Ma, and R. Thakur, “On the

efficacy of GPU-integrated MPI for scientific applications,” in Proceedings of

the 22nd international symposium on High-performance parallel and distributed

computing, HPDC ’13, (New York, NY, USA), pp. 191–202, ACM, 2013.

[90] S. J. Pennycook, S. D. Hammond, S. A. Jarvis, and G. R. Mudalige, “Perfor-

mance analysis of a hybrid MPI/CUDA implementation of the NASLU bench-

mark,” SIGMETRICS Perform. Eval. Rev., vol. 38, pp. 23–29, Mar. 2011.

[91] L. Chen, L. Liu, S. Tang, L. Huang, Z. Jing, S. Xu, D. Zhang, and B. Shou,

“Unified parallel C for GPU clusters: language extensions and compiler imple-

mentation,” in Proceedings of the 23rd international conference on Languages

and compilers for parallel computing, LCPC’10, (Berlin, Heidelberg), pp. 151–

165, Springer-Verlag, 2011.

[92] S. Potluri, D. Bureddy, H. Wang, H. Subramoni, and D. Panda, “Extending

OpenSHMEM for GPU Computing,” Parallel and Distributed Processing Sym-

posium, International, vol. 0, pp. 1001–1012, 2013.

179

[93] J. Jose, M. Luo, S. Sur, and D. K. Panda, “Unifying UPC and MPI runtimes:

experience with MVAPICH,” in Proceedings of the Fourth Conference on Par-

titioned Global Address Space Programming Model, PGAS ’10, (New York, NY,

USA), pp. 5:1–5:10, ACM, 2010.

[94] M. J. Koop, T. Jones, and D. K. Panda, “MVAPICH-Aptus: Scalable high-

performance multi-transport MPI over InfiniBand,” Parallel and Distributed

Processing Symposium, International, vol. 0, pp. 1–12, 2008.

[95] R. Barik, J. Zhao, D. Grove, I. Peshansky, Z. Budimlić, and V. Sarkar, “Commu-

nication Optimizations for Distributed-Memory X10 Programs,” in IPDPS’11:

Proceedings of the 2011 IEEE International Symposium on Parallel&Distributed

Processing, pp. 1101–1113, IEEE, 2011.

[96] D. J. Quinlan et al., “ROSE compiler framework.” http://www.rosecompiler.

org.

[97] C. Huang, O. Lawlor, and L. V. Kalé, “Adaptive MPI,” in Proceedings of the

16th International Workshop on Languages and Compilers for Parallel Comput-

ing (LCPC 2003), LNCS 2958, (College Station, Texas), pp. 306–322, October

2003.

[98] R. Thakur and W. Gropp, “Test Suite for Evaluating Performance of Multi-

threaded MPI Communication,” Parallel Comput., vol. 35, pp. 608–617, Dec.

2009.

http://www.rosecompiler.org
http://www.rosecompiler.org

180

[99] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-W. Tseng,

“UTS: An Unbalanced Tree Search Benchmark,” in Proceedings of the 19th

International Conference on Languages and Compilers for Parallel Computing,

LCPC’06, (Berlin, Heidelberg), pp. 235–250, Springer-Verlag, 2007.

[100] J. Dinan, S. Olivier, G. Sabin, J. Prins, P. Sadayappan, and C.-W. Tseng, “Dy-

namic Load Balancing of Unbalanced Computations Using Message Passing,”

International Parallel and Distributed Processing Symposium, vol. 0, p. 391,

2007.

[101] P. Sadayappan, J. Dinan, G. Sabin, et al., “The Unbalanced Tree Search Bench-

mark.” http://sourceforge.net/p/uts-benchmark/home/Home/.

[102] S. Ahuja, N. Carriero, and D. Gelernter, “Linda and Friends,” Computer,

vol. 19, pp. 26–34, Aug. 1986.

[103] P. Husbands and K. Yelick, “Multi-threading and One-sided Communication in

Parallel LU Factorization,” in Proceedings of the 2007 ACM/IEEE Conference

on Supercomputing, SC ’07, (New York, NY, USA), pp. 31:1–31:10, ACM, 2007.

[104] M. Frigo and V. Strumpen, “Cache Oblivious Stencil Computations,” in Pro-

ceedings of the 19th Annual International Conference on Supercomputing, ICS

’05, (New York, NY, USA), pp. 361–366, ACM, 2005.

[105] K. Datta, Auto-tuning Stencil Codes for Cache-Based Multicore Platforms. PhD

thesis, EECS Department, University of California, Berkeley, Dec 2009.

http://sourceforge.net/p/uts-benchmark/home/Home/

181

[106] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson,

“The Pochoir Stencil Compiler,” in Proceedings of the 23rd ACM Symposium

on Parallelism in Algorithms and Architectures, SPAA ’11, (New York, NY,

USA), pp. 117–128, ACM, 2011.

[107] V. Sarkar, “Synchronization Using Counting Semaphores,” in Proceedings of

the 2nd International Conference on Supercomputing, ICS ’88, (New York, NY,

USA), pp. 627–637, ACM, 1988.

[108] N. Vasudevan, O. Tardieu, J. Dolby, and S. A. Edwards, “Compile-Time Anal-

ysis and Specialization of Clocks in Concurrent Programs,” in Proceedings of

the 18th International Conference on Compiler Construction: Held As Part of

the Joint European Conferences on Theory and Practice of Software, ETAPS

2009, CC ’09, (Berlin, Heidelberg), pp. 48–62, Springer-Verlag, 2009.

[109] Java Community Process, “Java 7 Phaser (Java Platform, Standard Edition

7 API Specification).” http://docs.oracle.com/javase/7/docs/api/java/

util/concurrent/Phaser.html.

[110] M. L. Scott and J. M. Mellor-Crummey, “Fast, contention-free combining tree

barriers for shared-memory multiprocessors,” Int. J. Parallel Program., vol. 22,

pp. 449–481, Aug. 1994.

[111] A. Krishnamurthy, D. E. Culler, A. Dusseau, S. C. Goldstein, S. Lumetta,

T. von Eicken, and K. Yelick, “Parallel programming in Split-C,” in Proceedings

of the 1993 ACM/IEEE Conference on Supercomputing, pp. 262 – 273, 1993.

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Phaser.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Phaser.html

182

[112] J. Shirako and V. Sarkar, “Hierarchical Phasers for Scalable Synchronization

and Reduction,” in IPDPS ’10: Proceedings of the 2010 IEEE International

Symposium on Parallel&Distributed Processing, (Washington, DC, USA), pp. 1–

12, IEEE Computer Society, 2010.

[113] J. M. Bull, F. Reid, and N. McDonnell, “A Microbenchmark Suite for

OpenMP Tasks,” in Proceedings of the 8th International Conference on

OpenMP in a Heterogeneous World, IWOMP’12, (Berlin, Heidelberg), pp. 271–

274, Springer-Verlag, 2012. (Available at http://www.epcc.ed.ac.uk/

research/computing/performance-characterisation-and-benchmarking/

epcc-openmp-micro-benchmark-suite).

[114] J. D. Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “TiNy Threads: A Thread Virtual

Machine for the Cyclops64 Cellular Architecture,” in IPDPS ’05: Proceedings

of the 19th IEEE International Parallel and Distributed Processing Symposium

(IPDPS’05), (Washington, DC, USA), p. 265.2, IEEE Computer Society, 2005.

[115] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer, “Phaser Accumu-

lators: A New Reduction Construct for Dynamic Parallelism,” in Proceedings

of the 2009 IEEE International Symposium on Parallel&Distributed Processing,

IPDPS ’09, (Washington, DC, USA), pp. 1–12, IEEE Computer Society, 2009.

[116] Y. Yan, S. Chatterjee, D. A. Orozco, E. Garcia, Z. Budimlić, J. Shirako, R. S.

Pavel, G. R. Gao, and V. Sarkar, “Hardware and Software Tradeoffs for Task

Synchronization on Manycore Architectures,” in Proceedings of the 17th In-

ternational Conference on Parallel Processing - Volume Part II, Euro-Par’11,

(Berlin, Heidelberg), pp. 112–123, Springer-Verlag, 2011.

http://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
http://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
http://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite

